passionless Droning about autism

Archive for December 2011

Hello friends –

Lately I’ve found myself reading papers and knowing and owning several of the references; tragically I can’t tell if I’m reading the right research and am onto something, or I am chasing phantoms and my web of pubmed alerts and reading interests are funneling my reference list into a narrowing echo chamber of sorts.   With that warning in mind, we can proceed to poking around several papers, only some of which mention autism per se.  Along the way, we will see evidence supporting the possibility of a biologically plausible mechanism of developmental programming of the neuroimmune environment, a sequence of events that may lead to impaired synaptic pruning in (some cases of?) autism.

By now, everyone has seen/read/heard about one form or another of the ‘a massive asteroid is going to destroy the world’ story.  One of the common survival strategies from an asteroid strike involves altering the path of the asteroid so that it misses the Earth.  The thoughtful analysis of this problem allows for the physics based reality of the problem, moving an asteroid out of an extinction based trajectory involves just a little work when the asteroid is ten thousand gazillion miles away, but a lot more work when it is only a gazillion miles away.  Upon careful evaluation living organisms display similar behavior, relatively minor disturbances in early life can alter the developmental trajectory, while that same disturbance later in life is unable to materially affect the organism beyond a transient effect.   The accumulated evidence that early life experiences can shape the adult outcome is nearly impossible to dispute with any remaining intellectual honesty, the question is instead, is how large is the effect in autism?

This analogy adequately symbolizes one of the more beautiful and terrifying concepts I’ve come across researching autism, that of ‘developmental programming’, which I blogged some about here, but essentially is the idea that there are critical timeframes during which environmental impacts can have long term persistent effects on a wide range of outcomes.  The most robustly replicated findings involve changes to metabolic profiles in response to abnormal prenatal nutritional environments, but there is also evidence of various other effects, including neurological, and reputable speculation, that autism, may in fact, be in part, a disorder of developmental programming.

Secondarily, there has long been speculation of problems in the removal of ‘excess’ synapses, i.e., ‘synaptic pruning’ in the autism population.   This culling of synapses begins in fetal life continuing throughout adolescence and the repeated observations of increased head circumference during infancy as a risk factor for autism has resulted in the idea that altered synaptic pruning maybe involved in autism.

In the last month or so several rather serendipitously themed papers have been published with tantalizing clues about some of the finer grained mechanisms of synaptic pruning, the possibility of impaired synaptic pruning in the autism population, and a known risk factor for autism that models a developmental programming event sequence that may tie them together.

First off, we have Synaptic pruning by microglia is necessary for normal brain development, (Paolicelli et all) with a very straightforward title, that has this dynamite in the abstract: (snipped for length)

These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.

This paper is short, but pretty cool, and very nice from a new territory perspective.  It also speaks directly towards one of the increasingly hilarious obfuscations you will sometimes see raised in online discussions about immunological findings in autism, namely, that we can’t know if the state of chronic inflammation in the CNS observed in autism is harmful or beneficial.   [hint: It might not be causative, but it isn’t beneficial.]

Here’s is a snippet from the Introduction:

Time-lapse imaging has shown that microglia processes are highly motile even in the uninjured brain and that they make frequent, but transient contact with synapses. This and other observations have led to the hypothesis that microglia monitor synaptic function and are involved in synapse maturation or elimination.  Moreover, neurons during this period up-regulate the expression of the chemokine fractalkine, Cx3cl1, whose receptor in the central nervous system is exclusively expressed by microglia and is essential for microglia migration. If, in fact, microglia are involved in scavenging synapses, then this activity is likely to be particularly important during synaptic maturation when synaptic turnover is highest.

Nice.  A time dependent participation by microglia in the critical process of optimization of neuron numbers, a process we are still very much groping our way in the dark towards untangling.  The researchers focused in on a particular molecular target, a chemical messenger of the immune system, fractalkine, and found that without fractalkine, the process of synaptic turnover was impaired.

A couple of tests were performed, first immunohistochemistry (i.e., exceedingly clever manipulation of antibodies to determine the presence or absence of proteins in very specific locations) which demonstrated that microglia were, in fact, ‘engulfing synaptic material’ in animals during periods of synaptic maturation.

Secondly, so called ‘knock out mice’ (i.e., genetically engineered mice constructed without the ability to make a specific protein, in this case, fractalkine) were used evaluate for changes in synaptic form and function based on a lack of fractalkine.  Changes in dendritic spine density were observed in the knock out mice group, with much higher densities in a very specific type of neuron during the second and third postnatal week of life.  The authors indicate this is a key timeframe in synaptic pruning, and state their findings are “suggesting a transient deficient synaptic pruning in Cx3cr1 knockout mice “.  The effect of not having fractalkine on spine density was time dependent as shown below.

Several other measurements were taken, including synaptic firing frequencies, which also implicated an increased surface area for synapses on dendritic spines, consistent with impaired pruning.  Time dependent effects on synaptic efficiency and seizure susceptibility were also found, which the led the authors to conclude that the findings were “consistent with a delay in brain circuit development at the whole animal level.”

For additional evidence of fractalkine participation in synaptic maintenance, we can look to the opposite direction, where researchers evaluating neuron loss in an Alzheimers model reported “Knockout of the microglial chemokine receptor Cx3cr1, which is critical in neuron-microglia communication, prevented neuron loss”.  Taken together, the conclusion that fractalkine processing is involved with neuron maintenance is highly likely, and correspondingly, highly unlikely to be a set of spurious findings.

There’s a couple paragraphs on potential mechanisms by which fractalkine could be interacting with microglia to achieve this effect, with the authors claiming that their data and other data generally supports a model wherein microglia were not effectively recruited to appropriate locations in the brain due to a lack of fractalkine, or, a ‘transient reduction in microglia surveillance.’

The conclusion is a good layman level wrap up that speaks toward the Interconnectedness of the brain and the immune system:

In conclusion, we show that microglia engulf and eliminate synapses during development. In mice lacking Cx3cr1, a chemokine receptor expressed by microglia in the brain, microglia numbers were transiently reduced in the developing brain and synaptic pruning was delayed. Deficient synaptic pruning resulted in an excess of dendritic spines and immature synapses and was associated with a persistence of electrophysiological and pharmacological hallmarks of immature brain circuitry. Genetic variation in Cx3cr1 along with environmental pathogens that impact microglia function may contribute to susceptibility to developmental disorders associated with altered synapse number. Understanding  microglia-mediated synaptic pruning is likely to lead to a better understanding of synaptic homeostasis and an appreciation of interactions between the brain and immune system

That’s all pretty cool, but there was precious little discussion of autism, except in the general sense of a ‘developmental disorder associated with altered synapse number’.   [But the references do speak to autism, the first reference provided, Dendritic Spines in Fragile X Mice displays a significant relationship to autism, and it describes how another flavor of knock out mice, this time designed to mimic Fragile-X, exhibit a ‘developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes.’  Go figure!]

The other reason Paolicelli is of particular interest to the autism discussion is one of the major players in this study, the microglia (i.e., the resident immune cells of the CNS), have been found to be ‘chronically activated’ in the autism brain by direct  measurement in two studies (here, and here, [and by me, here]), and tons of other studies have shown indirect evidence of an ongoing state of immunological alertness in the autism brain.

Considering this is a brand new paper, I do not believe that there are any studies illuminating the results of a state of chronic activation of microglia on the process of synaptic pruning per se.  I will, however, go on the record that such an effect is very, very likely, and the logical leap is microscopically small that there will be some detrimental impact to such a state.  The inverse argument, a scenario wherein there could be a state of chronic microglial activation that does not interfere with microglia participation in the synaptic pruning requires logical acrobatics worthy of Cirque Du Soleil.  I am open to evidence, however.

So, from Paolicelli, we know that a ‘transient reduction in microglial surveillance’ induced by a reduction in the ability to production fractalkine can result in a condition ‘consistent with a delay in brain circuit development at the whole animal level’.

Next up, we have a paper that was all over the JerkNet in the days and weeks following its release, Neuron number and size in prefrontal cortex of children with autism.  This is a cool study, and likely a very important paper, but I must say that a lot of the online commentary exhibits an irrational exuberance towards one part of the findings.   Here is part of the abstract.

Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children.  [PFC == prefrontal cortex]

Essentially the authors used a variety of mechanisms to measure neuron number in a specific area of the brain, the prefrontal cortex, and found large variations (increases) in the autism group.   The prefrontal cortex is thought to be involved in ‘planning complex coginitive behaviors’, and ‘moderating correct social behavior’, among others, so this was a smart place to look.

The implicit hype on the internet is that this firmly indicates a ‘prenatal cause’ to autism, but if you read the paper, read what Courchense has said, and read recent literature, you know that the simplicity of this as a singular prenatal cause of autism is long broad strokes, and short on appreciation of the subtlety that textures reality.

A link @ LBRB sent me to the team at The Thinking Person’s Guide To Autism, who had a very nice transcription of a talk given by Courchesne at IMFAR 2011.  Here is a snipet that started my wheels turning.

What we see in autism is either an excess proliferation, producing an overabundance of neuron numbers, or the excess might be due to a reduced ability to undergo naturally occurring cell death. Or it could be both. We don’t know which and our data don’t speak to that, although our data do suggest that it’s probably both.

Finally, our evidence shows that across time, there’s a prolonged period of apoptosis, removal and remodeling of circuits. In order to get back to where neuron numbers are supposed to be, it takes a very long time for the autistic brain. In the normal developing brain, this takes just a few months. In autism, it’s a couple of decades.

[Note how well this fits within the model described by Paolicelli, i.e., “consistent with a delay in brain circuit development at the whole animal level”.  ]

I would highly recommend anyone who has read this far to go read the entire post @ TPGTA sometime.

As far as synaptic pruning goes, here is the associated segment of the paper:

Apoptotic mechanisms during the third trimester and early postnatal life normally remove subplate neurons, which comprise about half the neurons produced in the second trimester. A failure of that key early developmental process could also create a pathological excess of cortical neurons. A failure of subplate apoptosis might additionally indicate abnormal development of the subplate itself. The subplate plays a critical role in the maturation of layer 4 inhibitory functioning as well as in the early stages of thalamocortical and corticocortical connectivity development.inhibitory functioning and defects of functional and structural connectivity are characteristic of autism, but the causes have remained elusive.

Nearly half of the neurons in the area studied are expected to be removed through pruning, a process that extends well after birth.  That is something that you didn’t see referenced in too many places trumpeting this study as ‘proof’ that autism was caused by disturbances in the prenatal environment.  I’m not coming down on the prenatal environment as a critical timeframe for autism pathogensesis, just the difficult to defend underlying notion that this is the only time the environment should be evaluated, or the idea that if something is initiated prenatally other timeframes are therefore, unimportant.

So, I’d read that microglia were actively involved in proper synaptic pruning, contingent on utilization of fractalkine, and then read that impaired synaptic apoptotic mechanisms could be participating in autism, with a consequence of an over abundance of neurons.

Then, I got myself a copy of Microglia and Memory: Modulation by Early-Life Infection, which is another study in a growing body of evidence that immune challenges early in life can have unpredictable physiological consequences.  (This is another very cool paper with Staci Bilbo as an author, whom I think is seriously onto something.)  This study, in particular, focused on interactions microglia and formation of memories.   Here is the abstract:

The proinflammatory cytokine interleukin-1ß (IL-1ß) is critical for normal hippocampus (HP)-dependent cognition, whereas high levels can disrupt memory and are implicated in neurodegeneration. However, the cellular source of IL-1ß during learning has not been shown, and little is known about the risk factors leading to cytokine dysregulation within the HP. We have reported that neonatal bacterial infection in rats leads to marked HP-dependent memory deficits in adulthood. However, deficits are only observed if unmasked by a subsequent immune challenge [lipopolysaccharide (LPS)] around the time of learning. These data implicate a long-term change within the immune system that, upon activation with the “second hit,” LPS, acutely impacts the neural processes underlying memory. Indeed, inhibiting brain IL-1ß before the LPS challenge prevents memory impairment in neonatally infected (NI) rats. We aimed to determine the cellular source of IL-1ß during normal learning and thereby lend insight into the mechanism by which this cytokine is enduringly altered by early-life infection. We show for the first time that CD11b+ enriched cells are the source of IL-1ß during normal HP-dependent learning. CD11b+ cells from NI rats are functionally sensitized within the adult HP and produce exaggerated IL-1ß ex vivo compared with controls. However, an exaggerated IL-1ß response in vivo requires LPS before learning. Moreover, preventing microglial activation during learning prevents memory impairment in NI rats, even following an LPS challenge. Thus, early-life events can significantly modulate normal learning-dependent cytokine activity within the HP, via a specific, enduring impact on brain microglial function.

Briefly, the authors infected rats four days after birth with e-coli, and then challenged them with LPS in adulthood to simulate the immune system to evaluate if memory formation was affected.   As further evidence of an immune mediated effect, prevention of microglial activation in adulthood was sufficient to attenuate the effect.  Clearly the effect on memory formation was based on the immune system.  (Note:  Most of the studies I’ve read would indicate [i.e., educated guess] that a four day old rat is brain developmentally similar to the third trimester of a human fetus.)  While a terrifying and beautiful expression of developmental programming in its own right, there isn’t much to speak towards synaptic pruning in this paper, except maybe, potentially, one part of their findings.

In our study, CX3CL1 did not differ by group, whereas its receptor was decreased basally in NI rats, implicating a change at the level of microglia.

This is where things get either highly coincidental, or connected.  CX3CL1 is another name for fractalkine, i.e., animals that were infected in early life had decreased expression of the receptor for fractalkine compared to placebo animals, i.e., fractalkine is the same chemical messenger found to be integral in the process of synaptic pruning in Synaptic pruning by microglia is necessary for normal brain development!  From a functionality standpoint, having less receptor is very similar to having less fractalkine; as the animals in Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease tell us.

If, if synaptic apoptotic processes are impaired in autism, perhaps this is one mechanism of action. The timeline would involve a prenatal immune challenge, which causes a persistent decrease fractalkine receptor expression, which in turn, causes a consequent impairment in synaptic pruning through interference in microglial targeting.  There is near universal agreement that immune disturbances in utero are capable of altering developmental trajectory undesirably, and here, in an animal model, we have evidence that infections are capable of reducing availability of receptors of ligands known to play a critical role in synaptic pruning, the absence of which leads to conditions which are “consistent with a delay in brain circuit development at the whole animal level”. 

Only time, and more research, will tell if this is a pattern, a phantom, or a little of both.

–          pD


Advertisements

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 36 other followers


    • here: First of all I would like to say fantastic blog! I had a quick question that I'd like to ask if you don't mind. I was interested to know how you cen
    • What is forum seeding: Wow, that's what I was looking for, what a data! existing here at this blog, thanks admin of this web page.
    • Ibalance: Thank you for your time and effort. I first learnt about the early year challenge from Dr Suzanne Humphries. Your post provided more filling in the bl