passionless Droning about autism

A Brief Overview On Early Life Immune Challenges And Why They (Might) Matter

Posted on: May 13, 2009

Hello friends –

My over riding idea set on vaccines is relatively complicated; but at the heart, I just am not confident that we are smart enough to understand all of the potential impacts of aggressively pursuing mass vaccination; it is too drastic a change from how every animal on the planet evolved to be taken as lightly as we seem to be. The indisputable success of vaccination, I fear, has made it difficult to even ask questions about the pragmatism of moving forward with breakneck speed to a place where we think are clever enough to take a shortcut over millions of years of evolution without even bothering to evaluate for unintended consequences.  It isn’t that I think I am smarter than the immunologists who develop vaccines; it is that I think  we as a species, are too dumb to understand the impact of our actions without quality evaluations; detailed analysis that is sorely lacking in the area of vaccines. 

Before moving forward, it should be made clear that for a variety of reasons, the research regarding vaccines and autism that is available to us is has a very tight focus, either thimerosal content or its absence, or MMR. This is a statement of fact. There are no autism studies that evaluate anything else in the vaccination schedule other than these two components. There just aren’t. Anyone who tells you otherwise is either misinformed, or intentionally trying to deceive you for reasons of their own.

A common refrain heard in the debates over vaccinations and autism goes something like this: “We’ve studied it again and again, and every time, we see no association. It is time to move on and spend precious dollars and researcher hours elsewhere.” Also frequently used is the a variation on this quote: “Insanity is repeating the same thing and expecting different results.”

When I hear things like this, it drives me apeshit crazy; especially when it comes from the mouths of scientists, people who (supposedly?) understand the simplest foundation of the scientific principle, that you only learn about what you study. A study evaluating use of thimerosal vaccines and their non thimerosal containing counterparts has no mechanism of gaining insight into the effect cumulative early life immune activations; both vaccines have the exact same mechanism of action in that regard; otherwise, they wouldn’t be vaccines. In an ironic twist, continuing to study thimerosal, but claiming it gives us information regarding vaccination is, in large part, doing the same thing again and again and expecting different results.  Likewise, studying the MMR has been useful, as we have learned much about the MMR; but it gives us precious little insight into the effect of other vaccines, including those given at much, much earlier ages.

If we did twenty studies on cigarettes with tar and those without tar, should the resultant pattern of epidemiological findings give us any reason to believe we should extrapolate our findings outside the realm of the impact of tar in cigarettes?  Or, just because the MMR has been found to not to be associated with autism at eighteen months, should we also assume that other vaccines given at two months are therefore not associated with autism?  This is absolutely analogous to what we are being told regarding our existing set of research. 

That being said, it isn’t really enough to start questioning a massively successful health policy that has saved millions of lives just because some jerk on the Internet doesn’t think we’ve done enough looking into it and our existing studies have yet to tackle every imaginable combination of vaccine schedule, and genetic variation. The argument goes something along the lines of, “Yes, you are technically correct, but without some biologically plausible mechanism of action, we cannot keep on studying something just because there exists a temporal relationship between an increase in the vaccination schedule and an apparent increase in autism diagnosis.”  Without any concept of how more, earlier vaccines could be having an adverse effect that is invisible to our existing studies, there is merit to this argument. 

It is here that the research outlined below helps fill a gap in the discussion.   Anyways, a few weeks ago I was  reference backtracking, and wound up reading a set of research involving rather unexpected findings regarding the result of early life infectious exposure and resultant immune system activation. Looking through those references, it turns out, several research groups have been doing work regarding the effect of early development immune system activation and consequent alterations to a variety of biological realms, including effects on immune system functioning, altered stress responses, seizure susceptibility, and behavioral changes, into adulthood. In fact, many researchers have reported that a transient inflammatory response is capable of creating lifelong differences in exposed animals, if they are exposed during early development. The immune system is a work in progress in the prenatal and early post natal periods, and appears to be highly impressionable, and in some instances, unforgiving in response to disturbances. Note that the vast majority of the research below has only been published in the last couple of years; long, long after we started to aggressively increase the number of vaccines our youngest infants were receiving.

Most of the studies use a relatively standard component for initiating an immune response in the animals, Lipopolysacccharide, or shorthanded, LPS.  All of them deal with observing changes in animals into adulthood after early postnatal activation of the immune system.  Several were able to concurrently determine that the time of the immune activation was the determining factor in the animals persistent changes. 

Once I started trying to create a list of all of the research into this area, it was quickly apparent that it was overly cumbersome to get through, and ran the risk of turning into a stream of consciousness style listing of papers without an over riding set of guide posts as to why they might have implications for our vaccination schedule and autism or other neurological disorders.  With that in mind, I constructed a list of areas that these papers address and speak towards the blindspots in our existing vaccine research. 

  • Studies that took care to answer the question that the immune response  was responsible for differential behavioral or physiological outcomes.   For example, could the same outcome be achieved by administering inflammatory cytokines, as opposed to a bacterial or viral protein analog?  Was there an attempt made to introduce inflammatory inhibitors  that resulted in a negation of effects?  This is an important distinction, as otherwise, the argument could  be made that it was the LPS, as opposed to the resultant immune response that was responsible for the different outcomes. 
  • Studies that evaluated the effect of a time dependent effect on behavioral or physiological outcomes.   For example, did animals have different outcomes if their was an immune challenge at one week, as opposed to one month?   An extremely common refrain in this discussion is ‘the poison makes the dose’, unfortunately, it would seem that this is not necessarily the case.  
  • Studies that had findings that have correlations with known behavioral or physiological findings in autism.  Of course, without any findings that have similarities to autism, this exercise would be largely futile for a blog about autism!

Before getting started, I’d like to be clear that I am not advocating that vaccines cause autism; but rather, that we haven’t studied the issue very well, and that we are gaining experimental evidence that our existing studies are inadequately designed to capture many potential unintended effects.  My belief is that increased vaccination could impart a mild to moderate risk of autism diagnosis in some genetically predisposed individuals, and while I believe  that a true increase in autism prevalence is occurring, that not all of this is caused by vaccination.  A fuller detailing of these views if for another post, but the pertinent part here is that the studies outlined below tell us that we still have a lot to learn about how the immune system operates, especially during early development, and given that, proclamations that the vaccine schedule has been fully evaluated involve large leaps of faith. 

That being said, lets take a look at some of the papers on the subject.  In all instances below, the emphasis provided is my own.  Many abstracts are snipped for space purposes.

Postnatal Inflammation Increases Seizure Susceptibility in Adult Rats

There are critical postnatal periods during which even subtle interventions can have long-lasting effects on adult physiology. We asked whether an immune challenge during early postnatal development can alter neuronal excitability and seizure susceptibility in adults. Postnatal day 14 (P14) male Sprague Dawley rats were injected with the bacterial endotoxin lipopolysaccharide (LPS), and control animals received sterile saline. Three weeks later, extracellular recordings from hippocampal slices revealed enhanced field EPSP slopes after Schaffer collateral stimulation and increased epileptiform burst-firing activity in CA1 after 4-aminopyridine application. Six to 8 weeks after postnatal LPS injection, seizure susceptibility was assessed in response to lithium–pilocarpine, kainic acid, and pentylenetetrazol. Rats treated with LPS showed significantly greater adult seizure susceptibility to all convulsants, as well as increased cytokine release and enhanced neuronal degeneration within the hippocampus after limbic seizures. These persistent increases in seizure susceptibility occurred only when LPS was given during a critical postnatal period (P7 and P14) and not before (P1) or after (P20). This early effect of LPS on adult seizures was blocked by concurrent intracerebroventricular administration of a tumor necrosis factor (TNF) antibody and mimicked by intracerebroventricular injection of rat recombinant TNF. Postnatal LPS injection did not result in permanent changes in microglial (Iba1) activity or hippocampal cytokine [IL-1β (interleukin-1β) and TNF] levels, but caused a slight increase in astrocyte (GFAP) numbers. These novel results indicate that a single LPS injection during a critical postnatal period causes a long-lasting increase in seizure susceptibility that is strongly dependent on TNF.

The most exciting finding of the present study is that a mild inflammatory response evoked by LPS during a critical period of development causes a long-lasting increase in hippocampal excitability in vitro, and enhanced seizure susceptibility to the convulsants LI-PILO, KA, and PTZ in vivo. The latter effect was observed over a range of mildly inflammatory doses of LPS and was only evident if administered during the second postnatal week (P7 and P14), and not before (P1) or after (P20) this time. Importantly, inactivation of the proinflammatory cytokine TNF with an intracerebroventricular TNF antibody blocked the long-term changes to seizure susceptibility induced by LPS, whereas intracerebroventricular administration of rrTNF alone mimicked the effect of LPS on seizure susceptibility. These novel results indicate that a single transient inflammatory episode during development can modify the brain through a TNF-dependant mechanism, making it more susceptible to generate seizures in adulthood.

This paper hits a lot of the sweet spots we defined above; there was a differential effect on depending on when an immune response was initiated, pro inflammatory cytokine administration alone was sufficient to cause the same effect, and furthering the link to the immune response, administration of tnf alpha antibodies negated any effects. 

Of particular interest to our population of children, it is well established that children with autism grow up into adults with of epilepsy at far, far greater rates than their non diagnosed peers. One way to increase the likelihood of having more seizures, it appears, is to get a large dose of tnf alpha in early development.  Having a seizure in the first year of life has been found to be very strongly associated with an autism diagnosis, however, with this type of study it is difficult to detangle the cause and the effect; i.e., are they having seizures because they have autism, or are they getting diagnosed with autism as a result of early life  seizures?   There are some studies on the long term effect of early life seizures that show chronic activation of the brains immune system; and again, the innate inflammatory immune response is implicated in causation. 

Also of particular interest regarding autism is that the driving factor in this case was tnf alpha, a proinflammatory cytokine that has been shown to be elevated in several studies of children with autism. In fact, when researchers use drawn blood to determine immune responses, children with autism have been found to generate far more tnf alpha than controls in response to increasingly common (and scary) pollutants, common dietary boogeymen, and LPS. In other words, children with autism seem predisposed to creating more tnf alpha in response to a variety of environmental factors .  In two studies that analyzed the brains and CSF of children with autism, highly elevated levels of tns alpha were observed. 



 Here is one with a great title:


Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide.

Fever is an integral part of the host’s defense to infection that is orchestrated by the brain. A reduced febrile response is associated with reduced survival. Consequently, we have asked if early life immune exposure will alter febrile and neurochemical responses to immune stress in adulthood. Fourteen-day-old neonatal male rats were given Escherichia coli lipopolysaccharide (LPS) that caused either fever or hypothermia depending on ambient temperature. Control rats were given pyrogen-free saline. Regardless of the presence of neonatal fever, adult animals that had been neonatally exposed to LPS displayed attenuated fevers in response to intraperitoneal LPS but unaltered responses to intraperitoneal interleukin 1 or intracerebroventricular prostaglandin E2. The characteristic reduction in activity that accompanies fever was unaltered, however, as a function of neonatal LPS exposure. Treatment of neonates with an antigenically dissimilar LPS (Salmonella enteritidis) was equally effective in reducing adult responses to E. coli LPS, indicating an alteration in the innate immune response.In adults treated as neonates with LPS, basal levels of hypothalamic cyclooxygenase 2 (COX-2), determined by semiquantitative Western blot analysis, were significantly elevated compared with controls. In addition, whereas adult controls responded to LPS with the expected induction of COX-2, adults pretreated neonatally with LPS responded to LPS with a reduction in COX-2. Thus, neonatal LPS can alter CNS-mediated inflammatory responses in adult rats.

Here, again, the authors again went to some trouble to provide evidence that the effect was based on the resultant immune response by providing different bacterial proteins.  We also observe long term, persistent alterations in COX-2 levels; essentially an indicator of changes to the immune regulatory system; inhibition of the COX enzymes is how pain relievers such as aspirin and  Vioix work.   Strangely, it seems that the treatment group had higher resting levels of COX-2, but reduced production in response to a challenge.   The authors went on to perform a similar experiment on female rodents, with mixed similarities; the reduced fever response and response to challenge were observed as with the males, but, baseline levels of COX-2 were found to be the same between treatment and control animals.   There are obvious correlations here with the sexual dismorphism in autism diagnosis here, if anyone has any thoughts on sexual dismorphic COX-2 profiles, please send me a comment. 

I have not seen any papers directly measuring COX-2 in autism, but there are a great number on the related regulation of the immune system which show large differences between autism and control subjects.  Polymorphisms in the genes responsible for COX-2 have been found to be highly transmitted in the autism population.  I’ve been having some problems identifying the impact of this particular allele on circulating levels of COX-2.  One study on colorectal cancer seemed to indicate a protective effect from the allele, which would seemingly be at odds with a inflammation promoter.  Anyways, if anyone has any knowledge on this, please send it my direction. 

Also interest here, though I am having problems articulating the precise issue, is that IL1 or prostaglins did not result altered responses.  This, to me, could potentially speak towards a preferential training of the Toll Like Receptors, as opposed to a downstream functional area. 

Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition

We have reported that neonatal infection leads to memory impairment after an immune challenge in adulthood. Here we explored whether events occurring as a result of early infection alter the response to a subsequent immune challenge in adult rats, which may then impair memory.In experiment 1, peripheral infection with Escherichia coli on postnatal day 4 increased cytokines and corticosterone in the periphery, and cytokine and microglial cell marker gene expression in the hippocampus of neonate pups. Next, rats treated neonatally with E. coli or PBS were injected in adulthood with lipopolysaccharide (LPS) or saline and killed 1-24 h later. Microglial cell marker mRNA was elevated in hippocampus in saline controls infected as neonates. Furthermore, LPS induced a greater increase in glial cell marker mRNA in hippocampus of neonatally infected rats, and this increase remained elevated at 24 h versus controls. After LPS, neonatally infected rats exhibited faster increases in interleukin-1beta (IL-1beta) within the hippocampus and cortex and a prolonged response within the cortex. There were no group differences in peripheral cytokines or corticosterone. In experiment 2, rats treated neonatally with E. coli or PBS received as adults either saline or a centrally administered caspase-1 inhibitor, which specifically prevents the synthesis of IL-1beta, 1 h before a learning event and subsequent LPS challenge. Caspase-1 inhibition completely prevented LPS-induced memory impairment in neonatally infected rats. These data implicate IL-1beta in the set of immune/inflammatory events that occur in the brain as a result of neonatal infection, which likely contribute to cognitive alterations in adulthood.

Another instances where the authors used inflammatory inhibitors to obtain evidence that the behavioral outcomes were dependent on the immune response by administering inflammatory inhibitors. And again, we see drastic differences in behavior and immune response between animals that had an immune response early in life, and those that did not. This looks to be part of a multiple paper study, the initial paper can be found here.  Increased levels of IL-1beta have not been observed in children with autism; though some researchers have found that in response to LPS, children with autism produce more IL-1Beta than their non diagnosed counterparts.

Early-life immune challenge: defining a critical window for effects on adult responses to immune challenge

It was titles like this that really got my head spinning early on when I started to realize just how much information there was on this subject.

Many aspects of mammalian physiology are functionally immature at birth and continue to develop throughout at least the first few weeks of life. Animals are therefore vulnerable during this time to environmental influences such as stress and challenges to the immune system that may permanently affect adult function. The adult immune system is uniquely sensitive to immune challenges encountered during the neonatal period, but it is unknown where the critical window for this programming lies. We subjected male Sprague-Dawley rats at postnatal day (P)7, P14, P21, and P28 to either a saline or lipopolysaccharide (LPS) injection and examined them in adulthood for differences in responses to a further LPS injection. Adult febrile and cyclooxygenase-2 responses to LPS were attenuated in rats given LPS at P14 and P21, but not in those treated at P7 or P28, while P7-LPS rats displayed lower adult body weights than those treated at other times. P28-LPS rats also tended to display enhanced anxiety in the elevated plus maze. In further experiments, we examined maternal-pup interactions, looking at the mothers’ preference in two pup-retrieval tasks, and found no differences in maternal attention to LPS-treated pups. We therefore demonstrate a ‘critical window’ for the effects of a neonatal immune challenge on adult febrile responses to inflammation and suggest that there are other critical time points during development for the programming of adult physiology.

If you believe in reincarnation, I wonder just how bad a person you need to be in order to wake up as a Sprague-Dawley rat the next time?  Anyways, here we can see different results depending on the timeframe of immune activation.  And again, we see modifications to immune system regulation and behaviors. 

Early life immune challenge–effects on behavioural indices of adult rat fear and anxiety

Neonatal exposure to an immune challenge has been shown to alter many facets of adult physiology including fever responses to a similar infection. However, there is a paucity of information regarding its effects on adult behavioursMale Sprague-Dawley rats were administered a single injection of the bacterial endotoxin lipopolysaccharide (LPS) at 14 days old and were compared, when they reached adulthood, with neonatally saline-treated controls in several behavioural tests of unconditioned fear and anxiety. There was no effect of the neonatal treatment on performance in either the elevated plus maze, modified Porsolt’s forced swim test or the open field test. However, neonatally LPS-treated rats did show significantly reduced exploration of novel objects introduced to the open field arena, indicating an effect of the neonatal immune challenge on behaviours relating to anxiety in the adult.

Here, we see that early life exposure to endtoxin was seen to alter behaviors, including reduced exploration, indicative of increased anxiety. 

Long-term disorders of behavior in rats induced by administration of tumor necrosis factor during early postnatal ontogenesis

Another great title! In this case, the authors used straight tnf alpha and observed ‘long term disorders of behavior’. For our particular subset of children, who have been shown to create tnf alpha at highly exaggerated rates compared to their non diagnosed peers, the triggering mechanism has particular salience. 

 Early-life infection leads to altered BDNF and IL-1beta mRNA expression in rat hippocampus following learning in adulthood

By this point, the hows of what they did are probably pretty straightforward. Snipped from the abstract:

Taken together, these data indicate that early infection strongly influences the induction of IL-1beta and BDNF within distinct regions of the hippocampus, which likely contribute to observed memory impairments in adulthood.

Early-life exposure to endotoxin alters hypothalamic–pituitary–adrenal function and predisposition to inflammation

This is the oldest paper I have come across so far, published in 2000.

We have investigated whether exposure to Gram-negative bacterial endotoxin in early neonatal life can alter neuroendocrine and immune regulation in adult animals. Exposure of neonatal rats to a low dose of endotoxin resulted in long-term changes in hypothalamic–pituitary–adrenal (HPA) axis activity, with elevated mean plasma corticosterone concentrations that resulted from increased corticosterone pulse frequency and pulse amplitude. In addition to this marked effect on the development of the HPA axis, neonatal endotoxin exposure had long-lasting effects on immune regulation, including increased sensitivity of lymphocytes to stress-induced suppression of proliferation and a remarkable protection from adjuvant-induced arthritis. These findings demonstrate a potent and long-term effect of neonatal exposure to inflammatory stimuli that can program major changes in the development of both neuroendocrine and immunological regulatory mechanisms.

On the basis of our data, it does appear, however, that activation of endocrine and immune systems during neonatal development can program or “reset” functional development of both the endocrine and immune systems. In this respect it is noteworthy that exposure to steroids during immunization schedules in early life can alter the development of immune tolerance, and that animals raised in pathogen-free environments have increased susceptibility to inflammatory disease (20, 29–31). The environment in which a mammal develops is often the environment in which it must survive throughout life, and developmental plasticity must surely be of adaptive advantage. We suggest that “immune environments” during development not only can alter inflammatory and neuroendocrine responses throughout life but also may alter predisposition to stress-related pathologies associated with HPA activation.

There are some other papers out there that have failed to find a relationship between early life immune activation and subsequent HPA axis modulations.

Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain

Thus, a single bout of inflammation during development can programme specific and persistent differences in NR mRNA subunit expression in the hippocampus, which could be associated with behavioural and cognitive deficits in adulthood.

The author reports highly variable NMDA expression changes in animals tested over a variety of timeframes. Changes to NMDA receptors have been reported in autism, as well as in animals treated prenatally with valporic acid; which has been shown to greatly increase risk of autism diagnosis.

Neonatal immune challenge exacerbates experimental colitis in adult rats: potential role for TNF-alpha

Four days after TNBS treatment, plasma corticosterone was unaltered in all groups; however, TNF-alpha was significantly increased in adult TNBS-treated rats that had LPS as neonates compared with all other groups. In conclusion, neonatal, but not later, exposure to LPS produces long-term exacerbations in the development of colitis in adults.This change is independent of HPA axis activation 4 days after TNBS treatment but is associated with increased circulating TNF-alpha, suggestive of an exaggerated immune response in adults exposed to neonatal infection

Again, we see tnf alpha implicated as a mediating factor; in this case, animals treated with LPS during development went on to develop much more severe colitis symptoms when drug induced. These changes were only apparent if the immune insult occurred during a specific timeframe.  An increased baseline level of tnf alpha is also something that has been observed in the autism population. 

 Neonatal programming of the rat neuroimmune response: stimulus specific changes elicited by bacterial and viral mimetics 

Here, researchers performed an experiment to determine if immune stimulants other than LPS could generate ‘neonatal programming of the rat neuroimmune response’, so they used PolyIC; a viral protein analog during early life.  What was observed was that animals treated on postnatal day 14 showed attenuated febrile responses into adulthood, coinciding with altered corticosteroid responses.  Concurrent administration of a corticosteroid receptor blocker caused observed abnormalities to dissipate.  Very interestingly, they also observed that a mixed early life, adulthood challenge did not result in the observed differences; i.e., if an animal got a PolyIC immune stimulant in infancy, and an LPS stimulation in adulthood, no changes from saline animals were seen.  To me, this speaks again towards a specific training of the toll like receptors as the detection of viral proteins and consequent immune activation is handled by TLR-3, while the same job duties are handled by TLR-4 for bacterial proteins (i.e., LPS). 

Neonatal bacterial endotoxin challenge interacts with stress in the adult male rat to modify KLH specific antibody production but not KLH stimulated ex vivo cytokine release

While postnatal bacterial infection is capable of inducing a variety of long lasting functional alterations in immune function, the specific physiological pathways responsible for this modification are largely unknown. In the current investigation we explore the hypothesis that early life exposure to endotoxin permanently modifies the function of T helper (Th) cell activity. Therefore we examined Th-cell regulated in vivo humoral and ex vivo cellular responses to keyhole limpet hemocyanin (KLH). Given that stress has been shown to exacerbate some of the immunological alterations exhibited by the neonatally endotoxin challenged adult, we examined the adult’s Th1/Th2 responses to KLH under conditions of no stress, acute stress (2 daysx2 h), and chronic stress (7 daysx2 h). Our results demonstrate that adults neonatally challenged with endotoxin were found to produce significantly less IgG1 following KLH challenge following acute stress (p<0.05). Neonatally endotoxin treated animals exposed to acute stress were also found to produce less IgM than saline or endotoxin treated animals exposed to no-stress or chronic stress. No neonatal treatment group differences observed in the production of INF-gamma or IL-4 in adulthood. In summary, the results from the present study provide little evidence to directly support the hypothesis that neonatal endotoxin exposure significantly alters the Th1/Th2 balance in adulthood

This is a nice touch because the researchers mixed the exposure of acute stress with early life immune activation.  There are many studies on increased levels of biomarkers of stress in autism, and, it just so happens, children with autism have been shown to have decreased levels of IgG1 and IgM when compared to children without a diagnosis.  Other cytokine measurements were unchanged. 

There are other papers available with similar findings, but this set is a large chunk of what is out there.   Our summarization is as follows:

  • 12 studies showing  analyzing the effect of early life immune activation on rodents with findings into adulthood on behavior differences, seizure susceptibility, colitis susceptibility, HPA Axis modifications, and immune system changes. 
  • 1 study observed behavioral results from administration of tnf alpha alone.  (Zubareva OE, 2009)
  • 1 study observed physiological results from administration of tnf alpha alone. (Galic, 2008)
  • 3 studies used inflammatory inhibitors to validate the immune response was responsible for the physiological changes (seizure susceptibility), behavioral changes (memory impairments), and immune function.  (Galic, 2008, Ellis 2006,  Bilbo 2005).
  • 2 studies found that the timing of the immune activation was a mediating factor in causing persistent changes (Spencer, 2006, Galic, 2008).
  • 7 studies found persistent changes to the immune system.  (Boisse, 2004, Spencer 2006, Bilbo 2008, Shanks 2000, Spencer 2007, Ellis 2006, Walker 2009).
  • 1 study finding changes to brain receptor structures.  (Harre 2008).
  • 3 studies finding increased anxiety and / or fear responses.  (Zubareva 2009, Spencer 2006, Spencer 2005

In developing some of these ideas online, I ran into several arguments as to why we these findings have no bearing on our existing research into vaccination taking into consideration the a time dependent effect of immune activation.   Below, as near as I can remember, is a cataloging of these complaints, and my take on their validity, and in what ways the studies above provide information. 

1) Vaccines are already tested for safety and efficacy. 

Technically a true statement, but one that very quietly attempts to substitute safety testing for evaluation of autism.  Most of the safety studies, even those that follow participants for several years, are not designed to capture either neurological outcomes like autism, or more subtle changes such as persistent changes to immune system markers.  For verification of this, all one really needs to do is take a look at what happened in reality, and apply a primitive logical filter.  When it was posited that the MMR might be causing autism in some children, there was a flurry of retrospective studies performed on children who did or did not get the MMR.  Whatever your position on the quality of those studies, the fact is, those studies were necessary only because the existing set of safety and efficacy studies were not sufficient to answer the question of if there was an association with the MMR and autism.   In other words, why bother with retrospective studies if the existing literature already had evidence of no link? 

As for testing of immune system changes, you will be very hard pressed to find studies on the existing vaccine schedule for children that takes into consideration pre and post cytokine or related immunological measurements.  If anyone has any studies that I haven’t seen (which is two), please let me know.   One that I have found, Modulation of the infant immune responses by the first pertussis vaccine administrations has some rather startling findings. 

Many efforts are currently made to prepare combined vaccines against most infectious pathogens, that may be administered early in life to protect infants against infectious diseases as early as possible. However, little is known about the general immune modulation induced by early vaccination. Here, we have analyzed the cytokine secretion profiles of two groups of 6-month-old infants having received as primary immunization either a whole-cell (Pw) or an acellular (Pa) pertussis vaccine in a tetravalent formulation of pertussis–tetanus–diphtheria-poliomyelitis vaccines. Both groups of infants secreted IFN-γ in response to the Bordetella pertussis antigens filamentous haemagglutinin and pertussis toxin, and this response was correlated with antigen-specific IL-12p70 secretion, indicating that both pertussis vaccines induced Th1 cytokines. However, Pa recipients also developed a strong Th2-type cytokine response to the B. pertussis antigens, as noted previously. In addition, they induced Th2-type cytokines to the co-administrated antigen tetanus toxoïd, as well as to the food antigen beta-lactoglobulin. Furthermore, the general cytokine profile of the Pa recipients was strongly Th2-skewed at 6 months, as indicated by the cytokines induced by the mitogen phytohaemagglutinin. These data demonstrate that the cytokine profile of 6-month-old infants is influenced by the type of formulation of the pertussis vaccine they received at 2, 3 and 4 months of life. Large prospective studies would be warranted to evaluate the possible long-term consequences of this early modulation of the cytokine responses in infants.


Now this doesn’t mean that DTaP causes autism, but it does tell us that we are largely operating based on our findings of reduced disease and empirical measurements of seriopositivity, as opposed to a true understanding of all of the effects of vaccination; this study was conducted eight years after DTaP was licensed for use.   Clearly our existing set of safety and efficacy tests for DTaP were not sufficiently designed to capture this kind of information.  If anyone tells you that have the slightest fucking clue as to the result of such cytokine shifts in a generation of infants, you are being lied to.  This study also casts a relatively poor light on argument 3. 

Strength of argument: Zero. 

2) The vaccination hypothesis cannot explain X characteristic of autism.  (Where X is a ‘characterization’ of autism, such as improved spatial skills)

What this argument really says is that the person making cannot imagine a way in which characteristic X could be caused by vaccination, and therefore, the hypothesis is invalid.  Of course, of the few accepted causes of autism, such as prenatal exposure to ruebella, there is also no well defined mechanism by which such an event could lead to most of the characteristics that this argument utilizes.  An even biggest problem with this argument is that it mandates that every person with autism has characteristic X, when in fact, autism is characterized in part by large heterogeneousness.  And if we were to expand our premise from, ‘vaccines may cause autism through early life immune activation’, to, ‘autism may modify the behavioral or immune system functioning through early life immune activation’, this argument falls to complete irrelevancy without making our existing set of research any more robust.

Strength of argument: One.

3)  Infants are bombarded with antigens all the time and their immune system is not overwhelmed.  Vaccination is no different. 

Again, this argument starts with a kernel of technical truth; infants are forced to deal wifth a variety of bacterial and viral antigens from the moment they are born.   However, in the first place, the simplest commonsense logical tests tell us that there is a big difference between ‘everyday exposure’ and the contents of a vial.  For starters, your child comes equipped with an array of defense mechanisms to keep bacteria and viruses outside of their bodies, namely the skin, mucous, tears, and gastric acid.  When we use a needle to penetrate the skin and inject the antigens into the tissue, all of these natural defense barriers are immediately bypassed.  Secondly, the antigens in a vaccine aren’t alone; they come with aluminum based salts that are designed to enhance the immediate innate immune response.  Funny enough, the mechanism by which these chemicals achieve their function is still under investigation, but they are absolutely necessaray for a vaccine to initiate a sufficient immune response for the body to develop antibodies.   If we simply evaluate what regulatory agencies tell us; that low (or high) grade fevers are a common side effect of vaccination, between 5% and 30% of the time depending on the vaccine, we are forced to acknowledge that our children do not develop fevers anywhere close to the same frequency.  Or, we can look at the DTP / DTaP study above, where we observed highly differential immune profiles between different vaccines.  If all of the thousands or millions of antigens these children were exposed to in the intervening months were having a meaningful impact, it should have been impossible to identify one group from another; and yet, the different profiles were strikingly clear.   If everyday exposure is equivalent, how can we resolve these seemingly paradoxical findings? 

Strength of argument:  Three.  Even though vaccination is very different, the strawman argument of an ‘overwhelmed immune system’ is nicely defeated by this argument.   In our studies above that dealt with observed immune system alterations, however, it is not an “overwhelming” of anything that was observed, but rather, a persistent modulation with wide ranging effects. 

There are several frequent answers to these counter arguments.

3a) Just because you  sometimes have a fever after vaccination doesn’t mean your immune system isn’t activated the rest of the time. 

Again technically true, but it leaves out the fact that a fever indicates a more robust immune response.  Any effect that is dependent on the relative strength of  immune activation forces us to conclude that  we cannot draw equivalencies between normal immune system activation and what happens when you get a vaccine.  We can consider all of the animals from the studies above for insight; they were all exposed to plenty of bacteria on their own, they were rats after all; and yet, only those that received LPS, PolyIC, or tnf-alpha were seen to have changes.  In other words, if common immune system activation was sufficient to cause differential effects, with all of that background immune activation  there should have been no ability to tell which animals were in the treatment group.  And again, we can refer to the DTP/DTaP study for insight as to our ability to discern vaccine exposure and everyday exposure with measures beyond single pathogen seriopositivity.

3b) The immune response generated by the actual diseases are far more robust than that from vaccination.  Considering this, it is even more important to vaccinate children earlier.

If one of the concerns we have applies to the timing of the immune response, this answer is only sensible if we had a reasonable expectation that an infant  will become infected with diptheria, tetanus, pertussis, hepatitis b, rotavirus, haemophilus influenza, and/or polio by the age of two months, and again at four and six months of age.   While such a situation would no doubt have very poor outcomes for the child in question, the chances of any one of these things happening is very low.  On the other hand, the chances of an infant having an immune response initiated via vaccination at this age is approaching 100%.   Furthermore, this argument is frequently based on duration of response (a measure of bacterial or viral persistence, as opposed to strength of response), but several of the studies above found that a single, transient immune activation was sufficient to cause differences into adulthood. 

4) None of the studies above test vaccination. (sometimes coupled with: they test exposure to LPS)

Whatever the trigger, there is only one innate immune system to generate a response, and the gatekeepers of the immune response, the toll like receptors, are the components responsible for initiating the innate immune response be it by vaccination or wild bacterial/viral exposure.  It should be noted that there are times when both arguments 3 and 4 will be used nearly simultaneously.  For anyone concerned with an over reliance on LPS, we have several studies where viral analogs were used, and others where straight tnf-alpha achieved similar results.   Likewise, we have three studies showing that the use of inflammatory inhibitors resulted in amelioration of effects; strong evidence that the trigger of the immune response is relatively unimportant compared to the immune response itself. 

None the less, this argument has some validity in that it is difficult to compare the immunological strength of the response between dosages of LPS, PolyIC, and tnf-alpha with what happens after standard childhood immunizations.  Unfortunately, the reason such a comparison is impossible to perform is that we have no values to use as comparisons from the end of vaccination.   If someone could provide a study showing pre- and post- cytokine levels after common childhood vaccinations, please post a link.   Even with our studies that tell us that children with autism have a tendency to respond more vigorously to immune stimulants than their non diagnosed peers, this is a large unknown.  It would be very tricky to capture excellent in vivo comparison information here, as it would require injecting infants with LPS in order to gauge the immune response; there are all kinds of problems with that.  Animal models and in vitro may be the only options available. 

Strength of argument:  Five. 

 5) Humans grew up in dirty environments; they were exposed to viruses and bacteria all the time.  What is different about the most recent generation than the thousands of generations past?

 This is a pretty strong argument, after all, in general, conditions in the past were, generally, germier than they are now.  The issue, to my mind, is that even with a dirtier past, our actions have skewed what was once a distribution.  We have taken efforts to insure that every infant gets a robust immune response, and earlier in life; as opposed to what used to be some infants.  In other words, even if there was a fifty percent chance of a two month old having generated a strong immune activation in generations past, the chances are now much closer to one hundred percent.  The same thing happens at four months, and six months.  With the insane well meaning introduction of the Hep-B vaccine at the day of birth, this radical alteration to this distribution is unmistakable.  Part of the problem with gauging this argument is that there seems to be a wide range of ‘average’ infections reported in infants during their first year of life; with ranges from 0 – 12; and even with these, it is impossible to get a measure of the strength of the response.   Our ability to understand what the average was just a few generations ago completely futile. 

There are also large problems with drawing equivalencies between the other components of the environment of previous generations and the current generation. 

Strength of argument:  Seven. 

6) The model is wrong, there is just too much difference between human and rat physiology to be worried. 

The strongest contributor to this argument is uncertainty in our ability to accurately interpret the jump from prenatal to postnatal immune activation between rodents and humans.  But again, this is driven in large part by a relative paucity of information as opposed to a deeper understanding of the differences between the two.  After all, any amount of intellectual honesty tells us that the researchers in the experiments above are not overly concerned over the question as to if rats develop immune system differences into adulthood following early development immune activation; these experiments are being funded and performed because there are things to be learned about human physiology from the results.  To put another way, if researchers and funding agencies were confident that there was no way the same transient inflammatory episodes could have similar effects on people, would any of these studies actually been funded or performed?  The effect size also speaks towards the complexity of  going from rodent to humans. 

Strength of argument: Eight.  There is a real chance that all of the effects observed here in rodent models only have experiments to pre-natal exposures in humans.  Likewise, it is acknowledged that the rodent model is useful in many areas but that  frequency that results that look good in rodents and then poor in people, is very large.  Unfortunately, to my mind, this does not constitute evidence of lack of effect of our vaccination schedule, just one reason why it might not be having an effect.  It is the assumption of no effect, as opposed to the presence of quality analysis.

I’ve never actually had this argument made to me, strangely enough, but it does strike me as a very large question mark. 


The fact that these experimentsare being carried out at all, with the findings being described as novel, should be enough to tell us that for all practical purposes, we still are gaining an understanding of the effects of early life immune activation, some twenty years after we began to aggressively increase the number of vaccines our infants receive.  Just because the effects that were observed are sometimes very subtle does not mean that they cannot have profound ramifications, and if our existing analysis was not designed to capture subtle effects, drawing far reaching conclusions from them is worthless, and indeed, potentially dangerous.

With that in mind, is it possible to have a rational discussion about the possibilities of finding ways to gain more insight into the potential outcomes of earlier and more vaccination without invoking vitriole, charges of scientific illiteracy, the big pharma gambit or accusations of child abuse? 

– pD

30 Responses to "A Brief Overview On Early Life Immune Challenges And Why They (Might) Matter"

Thank you for this comprehensive post. I’ve read a few of yours elsewhere, which had corroborated many of my thoughts on the aggressive increase in the infant vaccination schedule. Physiologically, it makes absolutely no sense to vaccinate a human infant under the age of two.

I’ve long stated that the untoward effects are, at best, poorly understood. Damage does not have to be overt to be damage. Vaccine pushers would disagree.

Sadly, this is almost impossible to discuss. Even people that DO vaccinate, and have bona-fide questions that have scientific validity are categorized as believers in the illuminati that were likely just delivered home by aliens.

I’m not sure how to feel about any of it quite frankly, except that it is positively NOT the way to establish public trust.

Hi pD
Congratulations for your place. Very well presented post.
Other manuscripts in line with the risks of immune challenge and ischemia, hipoxia , early gut microbiota imbalances and other problems

Behav Brain Res. 2008 Dec 1;194(1):25-31.
Neonatal endotoxin exposure impairs avoidance learning and attenuates endotoxin-induced sickness behavior and central IL-1beta gene transcription in adulthood.Kohman RA, Tarr AJ, Sparkman NL, Bogale TM, Boehm GW.
Department of Psychology, Texas Christian University, Fort Worth, TX 76129 USA.

Infection during infancy, a time of critical neural development, may have long-term implications. Infection or exposure to an immune stimulus such as lipopolysaccharide (LPS) early in life leads to alterations in the reactivity of the hypothalamic-pituitary-adrenal axis (HPA) and febrile response in adulthood. Relatively few studies have assessed the behavioral and cognitive alterations induced by perinatal immune challenge. The data indicate that neonatal immune activation may alter adulthood behavior with, or sometimes without, subsequent adulthood exposure, depending on the study. The current study investigated the behavioral effects and IL-1beta transcription following intraperitoneal LPS administration on postnatal days (PNDs) 4 and 5, and subsequent LPS or saline administration in adulthood. Alterations in anxiety, motor behavior, and learning were assessed in male and female subjects. The results indicate that neonatal endotoxin exposure attenuated the LPS-induced decrease in motor behavior in female, but not male, subjects. Furthermore, perinatal immune activation disrupted avoidance learning in male, but not female, subjects in the absence of adulthood LPS administration. In addition, for male subjects, neonatal LPS exposure diminished central IL-1beta gene transcription following adulthood LPS administration. These findings indicate that perinatal endotoxin exposure may lead to alterations in the behavioral response to adulthood LPS administration, and provide evidence that early immune activation alone may trigger alterations in adulthood learning ability.

Ment Retard Dev Disabil Res Rev. 2002;8(1):30-8. Links
Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults.Hagberg H, Peebles D, Mallard C.
Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Göteberg, Sweden.

White matter damage (WMD) in preterm neonates is strongly associated with adverse outcome. The etiology of white matter injury is not known but clinical data suggest that ischemia-reperfusion and/or infection-inflammation are important factors. Furthermore, antenatal infection seems to be an important risk factor for brain injury in term infants. In order to explore the pathophysiological mechanisms of WMD and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, numerous novel animal models have been developed over the past decade. WMD can be induced by antenatal or postnatal administration of microbes (E. coli or Gardnerella vaginalis), virus (border disease virus) or bacterial products (lipopolysaccharide, LPS). Alternatively, various hypoperfusion paradigms or administration of excitatory amino acid receptor agonists (excitotoxicity models) can be used. Irrespective of which insult is utilized, the maturational age of the CNS and choice of species seem critical. Generally, lesions with similarity to human WMD, with respect to distribution and morphological characteristics, are easier to induce in gyrencephalic species (rabbits, dogs, cats and sheep) than in rodents. Recently, however, models have been developed in rats (PND 1-7), using either bilateral carotid occlusion or combined hypoxia-ischemia, that produce predominantly white matter lesions. LPS is the infectious agent most often used to produce WMD in immature dogs, cats, or fetal sheep. The mechanism whereby LPS induces brain injury is not completely understood but involves activation of toll-like receptor 4 on immune cells with initiation of a generalized inflammatory response resulting in systemic hypoglycemia, perturbation of coagulation, cerebral hypoperfusion, and activation of inflammatory cells in the CNS. LPS and umbilical cord occlusion both produce WMD with quite similar distribution in 65% gestational sheep. The morphological appearance is different, however, with a more pronounced infiltration of inflammatory cells into the brain and focal microglia/macrophage (“inflammatory WMD”) in response to LPS compared to hypoperfusion evoking a more diffuse microglial response usually devoid of cellular infiltrates (“ischemic WMD”). Furthermore, low doses of LPS that by themselves have no adverse effects in 7-day-old rats (maturation corresponding to the near term human fetus), dramatically increase brain injury to a subsequent hypoxic-ischemic challenge, implicating that bacterial products can sensitize the immature CNS. Contrary to this finding, other bacterial agents like lipoteichoic acid were recently shown to induce tolerance of the immature brain suggesting that the innate immune system may respond differently to various ligands, which needs to be further explored.

J Pediatr Gastroenterol Nutr. 2009 Apr;48 Suppl 2:S49-51. Links
Bacterial mucosa cross-talk and pathophysiology of inflammation.Ruemmele FM.
University Paris-Descartes, Faculty of Medicine, INSERM U793, Paris, France.

The intestinal mucosa harbors a complexly organized immune system, which accomplishes important, partially contradictory surveillance and protective functions. It has to protect the host from potential external (microbial and nonmicrobial) aggression, whereas at the same time avoiding an inflammatory reaction toward harmless antigenic structures of microbial (commensal microflora) or alimentary origin. Professional sentinels (of the innate immune system) are in close and interactive contact with the intestinal microflora, which plays via this exchange an important role during the postnatal period in the maturation of the intestinal immune system. The innate immune system is a key regulator of local and systemic immune responses, including the adaptive immune system. Distinct signals induce tolerance to specific antigens presented by intestinal dendritic cells, whereas proinflammatory mediators easily switch these tolerogenic responses toward protective or destructive inflammatory reactions. Given the intense exchange between the intestinal microflora and the mucosal immune system, a permanent but actively controlled and downregulated physiological inflammation characterizes the intestinal mucosa. Therefore, it is easily conceivable that perturbation of the intestinal microflora or immune control mechanisms can initiate or contribute to pathological and potentially chronic inflammatory reactions, such as seen in inflammatory bowel diseases.

Curr Opin Gastroenterol. 2007 Nov;23(6):655-60. Links
Development of mucosal immune function in the intrauterine and early postnatal environment.Blümer N, Pfefferle PI, Renz H.
Department of Clinical Chemistry and Molecular Diagnostics, University of Marburg, Marburg, Germany.

PURPOSE OF REVIEW: There is recent evidence that immunological priming can start prenatally or in the very early life phase. This review summarizes recent progress in the field of early gut immunology with special attention to factors contributing to the intrauterine and early postnatal development of mucosal immune responses in the gut. RECENT FINDINGS: Development and maturation of the fetal gut immune system occurs under close control of the maternal environment. Examples include maternal antibodies, cytokines, sCD14 molecules and bacterial antigens. Mouse experiments reveal that activated T cells can be detected already at birth in the fetal gut, which are supposed to be activated by signals from the maternal microbial gut flora. Human milk sCD14 is involved in the immunological priming of the developing gut immune system to Gram-negative bacteria and modulates the microbial recognition system of the gut. The development of food allergies is associated with consumption of food components like polyunsaturated fatty acids acting prenatally or in the early postnatal life span as immunomodulators. SUMMARY: The new findings highlight the importance of very early life factors for the development of the mucosal immune functions of the gut. Therefore, the gut might be a new target to establish preventive strategies with regard to different immunologic disorders.

: J Infect Dis. 2001 Jul 1;184(1):80-8. Epub 2001 May 29. Links
Heterogeneity in diphtheria-tetanus-acellular pertussis vaccine-specific cellular immunity during infancy: relationship to variations in the kinetics of postnatal maturation of systemic th1 function.Rowe J, Macaubas C, Monger T, Holt BJ, Harvey J, Poolman JT, Loh R, Sly PD, Holt PG.
TVW Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia.

Cellular immunity to vaccines is highly variable during infancy. This study addressed the hypothesis that these responses are governed by the pace of maturational changes in adaptive immune competence, in particular, cellular functions that underlie the postnatal transition from Th2 to Th1 “bias.” Tetanus-specific cytokine responses were tracked in peripheral blood mononuclear cells collected from infants at months 2, 4, 6, 12, and 18. These were compared with polyclonal responses. Results show that the Th2 component of the vaccine response develops rapidly and remains stable, unlike interferon (IFN)-gamma production, which also is initiated early but commonly declines after the final priming dose at 6 months. However, between 12 and 18 months, the IFN-gamma component of the vaccine-specific response has a spontaneous resurgence that coincides with a parallel increase in overall IFN-gamma production capacity. The Th2 component of vaccine-specific responses was more prominent in children with atopic family history.

Infect Immun. 2009 Apr 20. [Epub ahead of print] Links
Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric Salmonella Infection.Croswell A, Amir E, Teggatz P, Barman M, Salzman NH.
Department of Pediatrics, Division of Gastroenterology, and Department of Microbiology and Molecular Genetics, the Medical College of Wisconsin.

The impact of antibiotics on the host’s protective microbiota, and resulting increased susceptibility to mucosal infection are poorly understood. In this study, antibiotic regimens commonly applied in murine enteritis models are used to examine the impact of antibiotics on the intestinal microbiota, the time course of recovery of the biota, and the resulting susceptibility to enteric Salmonella infection. Molecular analysis of the microbiota showed that antibiotic treatment has impact on the colonization of the murine gut that is site and antibiotic dependent. While combinations of antibiotics were able to eliminate culturable bacteria, none of the antibiotic treatments were effective at sterilizing the intestinal tract. Recovery of total bacterial numbers occurs within one week after antibiotic withdrawal, but alterations in specific bacterial groups persist for several weeks. Increased Salmonella translocation associated with antibiotic pre-treatment corrects rapidly in association with the recovery of the most dominant bacterial group, which parallels recovery of total bacterial numbers. However susceptibility to intestinal colonization and mucosal inflammation persists when mice are infected several weeks after withdrawal of antibiotics, correlating with subtle alterations in the intestinal microbiome involving alteration of specific bacterial groups. These results show that the colonizing microbiota are integral to mucosal host protection, that specific features of the microbiome impact different aspects of enteric Salmonella pathogenesis, and that antibiotics can have prolonged deleterious effects on intestinal colonization resistance.

Nestle Nutr Workshop Ser Pediatr Program. 2008;62:13-29; discussion 29-33. Links
Factors influencing the establishment of the intestinal microbiota in infancy.Adlerberth I.
Department of Clinical Bacteriology, Göteborg University, Göteborg, Sweden.

The establishment of the intestinal microbiota commences at birth and new bacteria establish in succession during the first years of life until an adult-type highly complex microbiota has been achieved. The first bacteria to establish in the neonatal gut are usually aerobic or facultatively anaerobic bacteria, like enterobacteria, enterococci and staphylococci. During their growth they consume oxygen and change the intestinal milieu making it suitable for the proliferation of anaerobic bacteria. Bifidobacterium, Clostridium and Bacteroides are among the first anaerobes establishing in the microbiota. As more oxygen-sensitive species establish and the complexity of the microbiota increases, the population sizes of aerobic and facultative bacteria decline. This phenomenon is thought to result from oxygen depletion, substrate competition and the accumulation of toxic metabolites. A wide range of factors influence the intestinal microbiota and its establishment, including delivery and feeding mode, antibiotic treatment, and contacts with parents, siblings, and hospital staff. Differences in colonization pattern can be observed between vaginally and sectiodelivered infants, and between infants in industrialized and developing countries, reflecting the importance of maternal microbiota and the environment as sources of colonizing bacteria. This article describes the intestinal colonization pattern in human infants, and reviews factors affecting this process.

Where have you been pD?

Hi Cynic –

Nice handle –

Mainly I’ve been working on curing autism and arguing with people. There have been several manuscripts concerning early life immune insult and corresponding neuroimmune and behavioral outcomes since I wrote this post, but I have been too lazy to write an addendum. Also, I have a very large post on innate immune responses in autism about 1/2 written that I just haven’t found time to get around to finishing. Maybe I’ll work on it some this weekend!

Where have you been? I’m not sure I’ve seen your handle in any of the usual locations.

– pD

I just adopted it 🙂 I’ve got more than one though (kwim?)

I’ve been wasting air arguing as well. Just thought you might want to know that your rational and civil tone is missed in the highly volatile places.


[…] last sentence, regarding ‘long-lasting’ consequences of early life immune challenges is one that has a large, and growing body of evidence in the literature that report […]

re: “Studies that evaluated the effect of a time dependent effect on behavioral or physiological outcomes. For example, did animals have different outcomes if their was an immune challenge at one week, as opposed to one month?” and
“there was a differential effect on depending on when an immune response was initiated” — All this is interesting in relation to the study recently posted regarding more autism among babies born early. As they are generally vaccinated according to the typical schedule based on their date of birth (not due date) they are basically being vaxed at a younger age.

re: “2) The vaccination hypothesis cannot explain X characteristic of autism.” The other problem with this argument (and many along that line) is that the implication seems to be that if we don’t understand it, it must not be true, and so it is not worth studying. Isn’t the essence and spirit of science to study that which we don’t understand? Isn’t it putting the cart before the horse to say first we must understand why and how something occurs, and then that will mean it is worthy of study? How would anything new ever be discovered with this approach? And isn’t the essense of science to look at confusing facts and try to make sense of them, rather than assuming that if we don’t already understand them they can’t be true?

[…] This paper is another that shows some very difficult to predict outcomes as a response to an early life immune challenge.  Here is the abstract: Our previous studies have shown that neonatal exposure to […]

[…] methodology is very similar to what we see in a lot of animal models of early life immune activation, convince a young animals immune system that they are under microbial attack by mimicking either […]

Thanks extremely useful. Will certainly share site with my good friends.

Fantastic blog you have here but I was curious about if you knew
of any community forums that cover the same topics talked about in this article?
I’d really like to be a part of group where I can get advice from other knowledgeable people that
share the same interest. If you have any recommendations, please let me know.
Thanks a lot!

What’s up, everything is going perfectly here and ofcourse every
one is sharing data, that’s truly good, keep up writing.

Great post! We will be linking to this particularly great
article on our website. Keep up the great writing.

Hello, i thjnk that i saw you visited my weblog thus i came to ?return the favor?.I’m attempting tto find things to improve my
site!I suppose its okk tto use some of your ideas!!

You can even use the replay feature, tap on any picture and this
will reveal the Replay feature. Always allow the visitors
to comment on the posts that have been made to boost the visibility of the websites.
It is said that women have the power to melt the stones.

[…] “The Interconnectedness of the Brain, Behavior, and Immunology . . .” “A Brief Overview on Early Life Immune Challenges and Why They (Might) Matter” […]

This iis really interesting, You’re an overly skilled blogger.
I’ve joined your feed and sit up for looking for more of your grdeat post.
Additionally, I have shared your website in my social networks

Simply wish to say your article is as astounding.
The clearness onn your post iss simply gresat
and i ccan think you’re a professional on this subject.
Fine along with your permission allow me to clutch
your feed tto keep up to date with drawing
close post. Thankss a million and please keep up the gratifying work.

Hi, its pleasant piece of writing concerning media print,
we all be aware of media is a impressive source of

Unquestionably believe that which you said. Your favorite reason appeared to be on the net the easiest thing to be aware of.

I say to you, I definitely get irked while people think about worries that they
plainly do not know about. You managed to hit the nail upon the top and
also defined out the whole thing without having side effect , people could take a signal.

Will likely be back to get more. Thanks

Appreciating the time and effort you put into your blog and detailed information you present.
It’s great to come across a blog every once in a while that isn’t the same outdated rehashed information. Great read!
I’ve bookmarked your site and I’m including your RSS feeds to my Google account.

Hi it’s me, I am also visiting this site on a regular basis, this site is actually nice and the users
are genuinely sharing pleasant thoughts.

These options provide you the most versatility when it comes to obtaining
the ideal cost for your Planet Cup tickets.

whoah this weblog is great i love reading your posts. Stay up the good
work! You know, many people are hunting round for this
information, you could help them greatly.

It doesn’t mean you will end up noisy or obnoxious it
really means do not be scared. The email must be simply to
her, so she will notice you extra attention so you actually read her profile.
It is considered that men have only 1 thing going on within their minds – as well as
in your case it appears being true.

Unquestionably imagine that that you said. Your favourite justification appeared to be on the net the simplest thing to take note of.
I say to you, I certainly get irked even as folks think about worries that
they just do not know about. You managed to hit the nail upon the top as
well as defined out the whole thing without having side-effects , other folks could take a signal.
Will likely be back to get more. Thanks

This paragraph will assist the internet viewers for setting up
new blog or even a weblog from start to end.

Ѵery noce article, exаctly what I neеded.

Nice weblog here! Additionally yolur web site quite a bit up fast!
What host aree you using? Can I gget your associate hyperlink for your
host? I wixh my site loaded up aas quickly
as yours lol

What’s up to every body, it’s my first pay a visit of this web site; this weblog consists of remarkable and actually
good data in favor of visitors.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 34 other followers

%d bloggers like this: