Archive for the ‘You Can Call Me Curebie’ Category
The Fairytale of a Static Rate of Autism Part 5 – The Prevalence Jackpot Versus The Prevalence Hookup, Futilely Struggling To Making Sense Out of Static, And How Journey Autism Flavors Our Path Of Moving Forward
Posted April 17, 2013
on:Hello friends –
There used to be a poker room about twenty miles from my home; it sat above a run down greyhound racing track and smelled like an old shoe on the best day. But they had poker. They hosted an accumulating jackpot hand, usually worth a couple of thousand dollars, sometimes quite a lot more, which you could win if you got a royal flush in the current suit; i.e., if the suit was hearts, and you wound up with 10-J-Q-K-A hearts, you’d win the Jackpot. This could lead to some unusual cost/reward analysis scenarios.
Let’s say you sit down to play and buy in for a hundred dollars. Then, three hands later, you look at your two hole cards and you have 10-J hearts. Not really a great hand, but if the board winds up showing Q-K-A hearts somewhere in the next five cards, you win fifteen thousand dollars (or whatever the Jackpot had accumulated to). Almost everyone folds, but before you get a chance to see the next three cards for the two measly dollars you put up as a blind, an aggressive, serial over-better to your right raises to fifteen dollars. You are in a tough spot, you know the guy bets like crazy anytime he thinks he can steal a pot, but you still are losing to anyone with a queen. If you had 10-J spades, or clubs, or mixed, or (nearly) whatever else, this is easy; you dump your shitty cards. But with your two royal heart cards, you *could* win the jackpot; your odds still totally suck, even if you were getting paid off a thousand to one you still didn’t have the ‘right’ odds to make the call, but if you inhabit a place where losing fifteen dollars won’t kill you, but winning fifteen thousand would definitely be a game changer, the magnitude of the potential winnings must be part of your decision making process.
I called the raise a few times, but never hit the jackpot. Or even came close.
I keep coming back to the idea of incorporating the scale of potential outcomes when I think about the non event of the hilarious prevalence numbers that came out a while, one in fifty with ‘autism’. Nobody outside of Journey Autism fucking cared and the responses were depressingly predictable; the media and the Internet skeptics went ‘full awareness’, and found nothing of any alarm in these numbers, the Internet vaccine crazies went ‘full autism’, and assumed the numbers were solely comprised of individuals who would need 24×7 assistance for forever. It was all a big joke. Haha.
I don’t know how large the real increase in autism is (the older parental age data tells us unambiguously that some of the increase is non-imaginary), but I do know that as our best efforts at figuring this thing out has left us skipping from one in two hundred and fifty, to one in a fifty in eight short years. To my eye, this means a real increase of fifty percent (or more!) could easily be hiding in the static and we’d never know. Most everyone doesn’t seem to care, that is the way of the Prevalence Hookup, quickly embracing whatever prevalence numbers come out, coupling until a set of newer, bigger, even more ‘greater awareness’ numbers come along.
But my thoughts continue to be formed by concept of a sort of missed jackpot opportunity when I see a sense of complacency about our ever growing autism population; it isn’t that I don’t believe that diagnostic changes and the watering down of what a diagnosis means in terms of life skills aren’t affecting rates, those factors are clearly at play, but the ramifications of just “some” of the increase being real seems like a big, big, big deal to me. When your population of interest is every child, a small real increase means a lot of individual children are affected. Sure, it is, possible that older parental age is the only recent development that is affecting rates upward, with all of the rest being diagnostics, but I find little comfort in this notion. If the soft social scientists are wrong, even a little, and there is a true increase in incidence, we may come to regret the solace provided by our collective bobbleheading at the mantra of ‘greater awareness’, for it enabled us to waste a great amount of precious time.
The thing is, it doesn’t really cost us that fucking much to apply more resources to the unimportant, nagging question on the neurodevelopment of a generation of infants. In 2006, Bush signed the ‘Combating Autism Act’, a bill included a billion of dollars for ‘research, surveillance, and treatment’. That’s two hundred million a year. Last year, The Avengers, a stupid and shitty movie, made over a billion dollars. Now, I know there are other funding sources for research, surveillance, and treatment, but there were also a lot of other stupid movies.
I believe that this prioritization is the equivalent of folding 10-J hearts to a dinky four dollar raise; the knowledge we could gain from a relatively small outlay is worth a lot. We shouldn’t be worrying about the cost, we should be considering the payoff; the question we are trying to understand, “are today’s infants neurobiologically different than infants of the last generation?” has a difficult to understate payoff. We shouldn’t be embracing reasons to stop playing, we should chomping at the bit to see the next three cards. This is an easy call.
And yet, there was a collective yawn when the CDC announced 2%.
Funny enough, it was just a few years ago that the UK NHS study of adults found a prevalence of 1%, a finding which was heralded as remarkably strong evidence that autism rates are stable (at the time, 1% was the general value for US children. Oh well.). For some reason, the robustness of the NHS adult findings didn’t cause anyone to exclaim that there is a sort of epidemic-lite, what with US kids having autism as twice the rate as NHS adults. It was a classic case of doublethink; US kids have autism at 2%, England adults have autism at 1%, and autism rates are stable. (Believing that any of the numbers have validity might be closer to triplethink!)
A while ago I saw an interview with Fombonne on the SFARI site that contained the unsurprising byline: ‘Eric Fombonne says that the new CDC report does not necessarily mean that prevalence is increasing’. [Note: This was BEFORE the 2% numbers were reported!] Anyway, he made some interesting points about the messiness of the autism data showing how silly the state by state numbers are; Utah has four times the cases that Alabama does, and utilized different diagnostic methods. In the text of the interview, he reveals Utah also had very low levels of MR (~ 13% instead of ~ 28%), AND had a creepy low male to female ratio. Either there is something really weird going on in Utah, or the ‘numbers’ from Utah and Alabama are not measuring the same thing. It could also be that the numbers are measuring some of the same thing, and there are a couple of weird things going on in Utah (heh). But the bigger point should be that we shouldn’t expect to get a decent understanding of autism rates at a national level by clumping together Alabama numbers, Utah numbers, and whatever other numbers, shaking up them up, and averaging them out. Maybe the headline ought to read, ‘Pretty much somewhere between half a percent, and two percent of children might have something a psychologist, or a doctor, or both, have something called autism, the manifestations and lifelong impact of which vary considerably individually and regionally’, or maybe ‘Autism Rates: Your guess is as good as ours!’.
I don’t trust any set of numbers more than an educated stab in the dark.
[Note: for a slightly different take on ADDM numbers, you can see this interview on SFARI, where Walter Zahorodny reports that detailed analysis of NJ data indicates a likely real increase in rates. Doh!]
I began to wonder; if almost nobody really seems worried about an ‘epidemic lite’, if no almost no one is alarmed that the confidence intervals in our data could incorporate huge numbers of actual people, why am I so concerned? Is my version of the precautionary principle overly cautious? I don’t know the answer to these questions, but I think that part of the answer lies within my journey autism, watching my son’s challenges (and triumphs) unfold, and the knowledge that whatever we find about autism incidence, he will be reliant on other people for his survival for his entire life. That is the gift autism has given him; it doesn’t mean he can’t be happy, it doesn’t mean he can’t experience love, but so far, we cannot detect that autism has provided him anything other than near debilitating OCD, an imperfect sense of dangerous situations, and a lifelong requirement of the kindness and capabilities of others.
I am filled with a pervasive and soul crushing sadness at the possibility of one ‘extra’ child having the same challenges because of changes we have collectively made to the environment, and that is the heart of the semantic dance over how much of the increase is real. That is the Jackpot.
But, your mileage may vary. I know that there are some parents and people out there who have challenges as heavy as my son’s, and they don’t share my sense of panic over the issue. A lot of people credit their autism with benefits. I won’t discount their experiences. Part of the reason we don’t see eye to eye may be that we look at the same question, but see different risks, and different payoffs.
– pD
Extremely Long Overdue Clinical Findings “Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances”, and The Swan Song Of A Tragically Overused Autism Canard
Posted January 9, 2012
on:Hello friends –
My son was a ‘gut kid’. The irony is, for a while, because we were first time parents, we didn’t even know. My son was flagged for evaluation for autism around a year of age and we met with the autism center people several times between his first and third birthdays, with his official diagnosis coming just after he turned three. My wife came home from one of the early meetings convinced that his evaluators didn’t know the first thing about our son, autism, or anything else, and that in fact, they might be insane.
‘Do you know what those idiots asked me today?’
‘What?’
‘What his shits look like. My kid can’t talk and they want to ask me about his diapers!’
‘Who fucking cares?‘
We wound up caring, a lot. It turns out, this wasn’t a stupid question, it just seemed like one to us. The answer to their question was that our son was having at least four or six very messy diapers a day, his stools were never firm logs that look like they came from an spherical filter, but always, always more liquid than solid, and frequently contained chunks of identifiable food. But from our viewpoint, within the context of a child who was not speaking, hurting himself, and never looked at anyone, the idea that we should be worrying about his shit was the stupidest thing we’d ever heard.
But. When we started paying attention, starting reading, and started meeting more people with children with autism, our incredulity waned. We tried GF/CF and probiotics. We paid for lab tests to analyze the bacterial populations in his intestines. We experienced a life saving miracle with anti-fungal agents wherein my son essentially stopped hurting himself over the course of weeks after persistently banging his head dozens of times a day for six months. For nearly a year we removed all complex carbohydrates from our son’s diet, an intervention that makes GFCF feel like a Sunday afternoon after college but before kids and autism. We saw changes in our son based on how his GI tract was performing. For our son, for us, we knew that by some mechanism, what got put in his mouth, and what happened along the way was tightly coupled with how our son felt and behaved.
This is why my vision with spots of rage when I see the ideas of GI and dietary involvement with autism mocked by pseudo-skeptics so rampantly on the Internet. I cannot stand the thought of a single child continuing to suffer the way I watched my son suffer because they were told that there was no basis of GI interaction in autism. That thought hurts.
Those biases stated, we are now, finally, starting to see research indicating that in some cases of autism, there are very real, non imaginary differences in GI function.
A few months ago, Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances was published [full, dense, but very cool paper available online]. Here is the abstract.
Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism.
I’ll admit it. From the outside, from the don’t-have-a-kid-with-autism-and-GI-problems perspective, that is some dense and seemingly bland stuff. Essentially children with GI distress and children with GI distress and autism were compared and it was found that there were distinctly qualitative differences regarding the GI function in the groups. This is validation of what a lot of us have been saying for a long time, that the GI problems our kids were experiencing weren’t coincidental to the autism, but somehow related.
For anyone who has been paying attention to the details of the autism-gut debate, these are dynamite findings. These observations are the death knell for the overused, oversimplified notion that the GI connection to autism was a function of some kids having autism, some kids having GI distress, and that therefore, some kids with autism also have GI distress. This research tells us that the reality is not so simple.
This study is the view from the microscope as opposed to the telescope, and took care not to study just anyone with an autism diagnosis, but those with an autism diagnosis and GI distress, problems so severe that invasive procedures to obtain tissue samples from the GI tract was warranted. This is a critically important facet of the study design in my opinion, a lot of the negative findings in this arena have been epidemiological, and cast the widest possible net, capturing everyone with autism and comparing them with a sample of everyone else. This is a great strength of the paper; for too long everyone has acknowledged the heterogeneous nature of autism, but few studies have tried to understand differences at a phenotype level. This paper is different.
As evidence of the non-random population, the autism patient group had a regression incidence of over eighty percent, and nearly as many of the children in both groups were reported to have food allergies.
The details of the findings in the paper get deep pretty fast, but at a high level there were differences found in proteins involved with the digestion of carbohydrates and changes in bacterial populations between the groups, with some differences found with regard to specific locations in the intestine. Based on these findings, the authors speculate that alterations in carbohydrate processing could result in abnormal bacterial populations by way of altered microbial food availability in parts of the gut.
Based on these findings, we propose a model whereby deficiencies in disaccharidases and hexose transporters alter the milieu of carbohydrates in the distal small intestine (ileum) and proximal large intestine (cecum), resulting in the supply of additional growth substrates for bacteria. These changes manifest in significant and specific compositional changes in the microbiota of AUT-GI children (see Figure 7A–C).
The authors discuss a potential feedback loop of effects of intestinal microbes and nutritional processing, and of the known and potential effects of altered bacterial populations.
Additionally, intestinal microbes can influence the expression of disaccharidases and transporters [59] through the influence of pathogen-associated molecular patterns (PAMPs) and butyrate (a byproduct of bacterial fermentation) on CDX2 expression and activity [60], [61], [62], [63]. In this regard, the observation that CDX2 was decreased in AUT-GI children with increased levels of Betaproteobacteria may be important.
Whatever the underlying mechanisms, reduced capacity for digestion and transport of carbohydrates can have profound effects. Within the intestine, malabsorbed carbohydrates can lead to osmotic diarrhea [64]; non-absorbed sugars may also serve as substrates for intestinal microflora that produce fatty acids and gases (methane, hydrogen, and carbon dioxide), promoting additional GI symptoms such as bloating and flatulence [65].
This is very similar to the underlying theory of the Specific Carbohydrate Diet, impaired carbohydrate digestion promotes bacterial imbalances in the intestine by altered food availability, leading to gastrointestinal distress.
Because of the varied nature of the protein imbalances found and absence of the common alleles associated with such conditions, the authors report that it is unlikely that the underlying cause of the imbalances is genetically based.
In our study, 93.3% of AUT-GI children had decreased mRNA levels for at least one of the three disaccharidases (SI, MGAM, or LCT). In addition, we found decreased levels of mRNA for two important hexose transporters, SGLT1 and GLUT2. Congenital defects in these enzymes and transporters are extremely rare [40], [41], and even the common variant for adult-type hypolactasia was not responsible for reduced LCT expression in AUT-GI children in this cohort. Therefore, it is unlikely that the combined deficiency of disaccharidases (maldigestion) and transporters (malabsorption) are indicative of a primary malabsorption resulting from multiple congenital or acquired defects in each of these genes.
There are a couple of ideas presented on what might be causing the altered disaccharide transporter levels, with food composition intake, immune or hormonal irregularities, and bacterial populations and their associated fermentation byproducts listed as possible candidates. This study did not attempt to determine if any of these things were actually responsible, but an upcoming paper will also detail qualitative differences in expression of genes involved with inflammation in the autism group.
Regarding bacterial populations found, there were several differences identified by bacterial classification and location as well as some associations with onset of autistic behaviors and GI distress.
Pyrosequencing analysis of mucoepithelial bacteria revealed significant multicomponent dysbiosis in AUT-GI children, including decreased levels of Bacteroidetes, an increase in the Firmicute/Bacteroidete ratio, increased cumulative levels of Firmicutes and Proteobacteria, and increased levels of bacteria in the class Betaproteobacteria.
Stratification of AUT-GI children based on the timing of GI symptom development relative to autism onset revealed that the levels of Clostridiales and cumulative levels of Lachnospiraceae and Ruminococcaceae were significantly higher in AUT-GI children for whom GI symptoms developed before or at the same time as the onset of autism symptoms compared to AUT-GI children for whom GI symptoms developed after the onset of autism and compared to Control-GI children. However, we cannot discern whether changes in Clostridiales occurred before the onset of autism in this subgroup. We can only conclude that increased levels of Clostridiales members in biopsies taken after the development of both GI symptoms and autism are associated with the timing of GI onset relative to autism onset in this cohort. Although the reason for this association remains unclear, this finding may suggest that the timing of GI onset relative to autism is an important variable to consider in the design of future prospective studies investigating the microbiota of children with autism.
I am in love with the appreciation of the subtlety on display at the end, it may not be sufficient to simply categorize by GI and non GI autism, but also by the temporal relationship to onset of behavioral symptoms. It makes for a messy outlook going forward, but one based on pragmatism as far as coming to valid conclusions.
As is appropriate, the authors end with an admission that we are still largely groping in the dusk about how the microbiome interacts with our tightly coupled systems, but give a variety of reasons to believe that what we do know makes system wide effects reasonable and a relationship with autism plausible.
Metabolic interactions between intestinal microflora and their hosts are only beginning to be understood. Nonetheless, there is already abundant evidence that microflora can have system-wide effects [76], [77], [78], [79], [80], [81], [82], [83] and influence immune responses, brain development and behavior [24], [25], [26], [84], [85].
No kidding!
It should be noted that this paper is a child of a 2010 IMFAR abstract, Intestinal Inflammation, Impaired Carbohydrate Metabolism and Transport, and Microbial Dysbiosis in Autism. If I understand correctly, another paper is being prepared regarding the findings of intestinal inflammation that will be complimentary to Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances. I’ll try to post something when it is published.
This study was small, with only twenty two participants, largely as a result of the difficulty in obtaining tissue specimens. While this does give us cause for caution, it is important to note that this research does not exist in a vacuum, but rather, as a much larger set of research that tell us that the relationship between GI complaints and autism is more than the inceptions of DAN doctors. Previously, Gastrointestinal abnormalities in children with autistic disorder, performed similar biochemistry and reported broadly consistent carbohydrate digestion problems, ‘Low intestinal carbohydrate digestive enzyme activity was reported in 21 children (58.3%), although there was no abnormality found in pancreatic function.’ Several other papers analyzing fecal samples have reported altered bacterial populations, including Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism, Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity, Fecal lactoferrin and Clostridium spp. in stools of autistic children, and Pyrosequencing study of fecal microflora of autistic and control children, among others.
If the findings from this latest paper are spurious finding based on sample size problems, a lot of other studies are coincidentally finding the same type of thing in the wrong way. Does anyone think that is likely?
I entered the autism world and online autism debate from a place of seeing with my own eyes the failures of a toddlers GI function and the difficult to overstate changes in that toddler alongside improvements in his GI health. On one of the first autism blogs on which I participated I got into a discussion (argument?) with a blogger who I came to respect very much, but has since moved on. I described the fact that my son had six or more diarrhea stools, a day, every day, for months on end, and that when we added dietary changes, probiotics, and later antifungal agents, the changes to his GI function were profound and impossible to misinterpret. He told me something along the lines that humans were susceptible to illusions and sleight of hand, and I thought, ‘as if not knowing the difference between diarrhea and a log was along the lines of figuring out where the jack of spades went!’. I couldn’t believe, could not fucking believe, someone would try to convince me that I had imagined my sons problems, and associated recovery. This wasn’t a sugar pill study where I was asked if my child acted more or less hyperactive, this was a matter of asking myself, ‘How many diarrhea diapers did I change today? Six? Or Zero?’ [Repeat once a day for 180 days.]
I doubt this is necessary, but just in case, I will go on the record to state that it is easy, very easy, to tell the difference between a condition of chronic diarrhea and normal GI function. There might not be a more simpleminded determination to make on Planet Earth or indeed, our perceptible universe. This is a situation that is susceptible to placebo effects only in the most elaborate imaginations of people who have never experienced chronic GI problems.
From that time on, with nearly zero exceptions, I have become a little less shocked, but a little more saddened by the doublethink style skepticism applied to GI distress and autism in nearly every single conversation I have ever seen on the Internet. I’ve put some time thinking toward this, why so many otherwise intelligent people house such extreme hostility on a relationship between GI function and autism. I believe that the Wakefield / MMR autism debacle is at the heart of this disconnect; his ill fated and now retracted paper that launched a thousand Internet scribbles has seemingly forever tied GI complaints and autism to bad science.
It doesn’t have to be this way. As a community, the vaccine wars and kissing cousin prevalence question has done a lot to fracture us, and very little to unite us. That is a sad statement, and nothing makes it more unfortunate than the fact that it does not have to be this way. Wakefield can be wrong about the MMR and there can still be very real differences in GI function in some cases of autism. We can respectfully disagree about how well our existing prevalence studies inform us on the incidence of autism without also needing to accept a world view where every child with autism has raging bowel problems.
We should have the intellectual honesty to admit that there is nothing inherently dangerous about acknowledging what the data tells us; GI function seems to be abnormal in a subset of children with autism, and the underlying features of that GI distress are qualitatively different than what is found in ‘normal’ children.
– pD
Very Neat Paper – Differential monocyte responses to TLR ligands in children with autism
Posted February 22, 2010
on:- In: Autism | IL-6 | Immunology | LPS | M.I.N.D | Phenotypes | Some Jerk On The Internet | Tnf-Alpha | Toll Like Receptors | You Can Call Me Curebie
- 2 Comments
Hello friends –
One of the most frequent omissions in the pre-eminent autism debate is the very, very different immune response that our population of interest seems to have in comparison with children without a diagnosis of autism. A 2009 paper from the MIND institute is a good example of this type of finding, “Differential monocyte responses to TLR ligands in children with autism“.
Some background is critical here to understand this paper. The very first step in the initation of an immune response is the identification of an invading pathogen as foreign to the body, an intruder, and subsequently marshalling other immune system cells to launch a counterattack on the foreign attacker. The components of the immune system that are responsible for this are the Toll Like Receptors, or TLRS. [The Wiki link, at left, has a very nice table of the known TLRs and the triggering molecular structure, immune system cells that express the TLR, and signaling mechanisms. ] At a very detailed molecular level, these proteins have developed the ability to discriminate different classifications of microbial pathogens; in other words, some TLRs can identify cell structures common to bacteria, some TLRs identify signatures associated with viruses, and so on. It is the TLRs that launch the first phase of the immune response, the innate immune response, and there is increasing evidence that TLRs also play a role coordinating the adaptive immune response. For our purposes, it is sufficient to understand that Toll Like Receptors are the critical starting point of the generation of innate immune cytokines that we see abnormal in so many studies in autism.
From the abstract:
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. Recent evidence has suggested that impairments of innate immunity may play an important role in ASD. To test this hypothesis, we isolated peripheral blood monocytes from 17 children with ASD and 16 age-matched typically developing (TD) controls and stimulated these cell cultures in vitro with distinct toll-like receptors (TLR) ligands: TLR 2 (lipoteichoic acid; LTA), TLR 3 (poly I:C), TLR 4 (lipopolysaccharide; LPS), TLR 5 (flagellin), and TLR 9 (CpG-B). Supernatants were harvested from the cell cultures and pro-inflammatory cytokine responses for IL-1b, IL-6, IL-8, TNFa, MCP-1, and GM-CSF were determined by multiplex Luminex analysis. After in vitro challenge with TLR ligands, differential cytokine responses were observed in monocyte cultures from children with ASD compared with TD control children. In particular, there was a marked increase in pro-inflammatory IL-1b, IL-6, and TNFa responses following TLR 2, and IL-1b response following TLR stimulation in monocyte cultures from children with ASD (p < 0.04). Conversely, following TLR 9 stimulation there was a decrease in IL-1b, IL-6, GM-CSF, and TNFa responses in monocyte cell cultures from children with ASD compared with controls (p < 0.05). These data indicate that, monocyte cultures from children with ASD are more responsive to signaling via select TLRs. As monocytes are key regulators of the immune response, dysfunction in the response of these cells could result in long-term immune alterations in children with ASD that may lead to the development of adverse neuroimmune interactions and could play a role in the pathophysiology observed in ASD.
So, at a high level we can see that in the test tube, blood from children with autism generates a different immune response than blood from children without autism, and further, that this differentiation seems to be TLR specific. In a surpizingly common finding, we observe an increase in pro-inflammatory cytokines such as IL-1B, IL-6, and TNF-Alpha, all of which have many other findings in autism, seizures, and other neurological conditions. More curious, to my mind, is the decreased response to TLR9, another TLR responsible for orchestrating the immune response to some types of bacterial invaders.
From the discussions section:
Our results indicate notable differences in cytokine production following TLR stimulation in monocyte cell cultures from ASD children including increased pro-inflammatory cytokine production following exposure to the TLR 2 ligand, LTA with increased production of IL-1b, IL-6, and TNFa (3.3-, 3.1-, and 2.9-fold increases, respectively) relative to TD controls. In addition, there was an almost twofold increase in IL-1b responses following TLR 4 stimulation with its ligand LPS. Our current findings are consistent with previous reports of enhanced innate immune activity in ASD (Croonenberghs et al., 2002; Jyonouchi et al., 2001), and further indicates that a dysfunctional innate immune response may occur in a number of individuals with ASD.
TLR2 and TLR4 are both involved with sensing and responding to bacteria; I’m not up to speed currently to give a good description of the specific bacterial populations; for example, TLR4 is responsible for sensing gram negative bacteria, which refers to a specific protein structure on some types of bacteria. The paper then goes on to describe some of the other known findings involving TLRs or their outputs for autism or other neurological conditions.
Pro-inflammatory cytokines, IL-1b, IL-6, and TNFa, which are predominantly derived from cells of the monocyte lineage, are of special interest in the study of neuroimmunological contributions to psychiatric disorders. These cytokines can act both locally and centrally to increase neuroinflammatory responses and/or to affect brain function such as the induction of serotonin from the hypothalamus; changes that may affect behavioral responses (Dunn, 2006). Of the TLR ligands analyzed in this study, those specific to induce TLR 2 signaling, elicited the most profound pro-inflammatory response in monocyte cell cultures derived from children with ASD. TLR 2 is constitutively expressed on the surface of microglial cells (Bsibsi et al., 2002; Kielian et al., 2005; Olson and Miller, 2004) and deficiencies in TLR 2 but not TLR 4, reduce T cell recruitment, microglial proliferation, and cytokine/chemokine expression in a neonatal murine model (Babcock et al., 2006). Previous animal studies have demonstrated that TLR 2 stimulation, leading to pro- inflammatory cytokine production, is sufficient to induce neuroinflammation and the neuronal degeneration that is characteristic of bacterial meningitis, and that TLR 2 deficient animals are protected from such changes (Hoffmann et al., 2007). In a murine EAE model of multiple sclerosis, the clinical disease course and severity of the condition correlated with increased brain expression of CD14 and TLR 2 transcripts, suggesting that there is an increase in or upregulation of microglial cells and monocytes in this model, and that TLR signaling may be actively involved in neuroinflammation and autoimmune development (Zekki et al., 2002). The induction of an inflammatory cytokine storm, initiated by monocyte activation, could produce downstream effects leading to the generation of neuroinflammatory and/or autoimmune responses. An autoimmune sequelae such as the generation of anti-neuronal antibodies to a wide variety of targets have been described in individuals with ASD and may be a consequence of responses originally started by inappropriate innate immune activity (Cabanlit et al., 2007; Connolly et al., 2006, 1999; Croen et al., 2008; Kozlovskaia et al., 2000; Silva et al., 2004; Singh and Rivas, 2004b; Singh et al., 1997a,b; Wills et al., 2009).
Of particular interest here is the discussion that TLR seems to play a very important role in the immune response in the CNS, and in fact, animals bred without TLR2 expression fail to develop a neuroinflammatory state when induced in normal rodents. Given what we know from Vargas, Li, Chez, and Garbett, we seem to be observing an ongoing immune response in the CNS in autism, the fact that TLR2 seems to respond more robustly in the autism population would seem to be a piece of the puzzle as to why this might be occurring. In a very real way, for reasons still unclear, people with autism are predisposed to respond more robustly using mechanisms already associated with neuroinflammatory conditions.
Following is a section focusing on a variety of research involving prenatal immune challenges and subsequent behavioral outcomes in the offspring. Then there is a section that has a lot of very cautiously placed ‘ifs’, ‘maybe’s, and ‘possibles’ that still raises a lot of intriguing possibilities.
In this study, we demonstrated that there is differential signaling in monocytes through different TLRs in children with ASD compared to TD controls. For instance, while LTA induced an increased pro-inflammatory IL-1b, IL-6, and TNFa response and LPS induced increased IL-1b in ASD compared to TD, exposure to poly I:C or flagellin produced similar responses between cases and controls, and CpG produced a significantly lower monocyte response in ASD compared to TD. This may mean that signals generated through different TLR by the recognition of distinct PAMPS expressed by specific bacteria or viruses may lead to differential innate immune activity in ASD. For example, in the current study, signaling through TLR 9 by CpG stimulation was notable for resulting in significantly lower IL-1b, TNFa, MCP-1, and GM-CSF release in ASD compared with TD. Typically, TLR 9 ligand recognition induces downstream anti-viral responses, mainly through interferon a/b production (Kawai and Akira, 2007). The clinical significance of this is unknown but may suggest that children with ASD respond poorly to TLR 9 stimulation that may lead to an ineffective anti-viral interferon response and may to inappropriate responses which could lead to infection, chronic inflammation and tissue destruction and could hence expose the individual to increased levels of autoantigens.
In contrast, signaling through TLR 2 and TLR 4 leads to the marked release of pro-inflammatory cytokines. The pronounced increase in the production of these cytokines in response to LTA and LPS ligation warrants further investigation to elucidate the signaling cascade generated from TLR 2 and TLR 4. A previous report indicated that in the first month of life, children that later develop ASD have more infections than their counterparts (Rosen et al., 2007). These previous findings documenting the presence of increased bacterial and viral infections in conjunction with our observations that children with ASD are hyper-responsive to LTA and LPS stimulation could suggest that aberrant signaling through TLR 2 and TLR 4 may participate in this disorder. Inappropriate stimulation of innate immune responses during critical neurodevelopmental junctures, such as early childhood, could contribute to alterations in neurodevelopment and potentially lead to changes characteristic of ASD (Rosen et al., 2007).
I haven’t read Rosen 2007 yet, but it is on my list. [Does anyone have a copy?]
This altered innate immune response may have widespread effects on the activation and response of other immune cells and may also impact on neuronal activity given the extent of cytokine receptors present on neuronal and glial cells (Gladkevich et al., 2004). Furthermore, altered innate responses may ultimately play a role in the initiation and perpetuation of autoimmune responses that are present in some individuals with ASD. Our observations might also reflect genetic alterations in TLR signaling pathways, or pathways that control
monocyte function, such as the MET pathway, and ultimately lead to monocyte activation and cytokine production. MET is a pleiotropic receptor tyrosine kinase and is a key negative regulator of immune responses (Beilmann et al., 1997, 2000; Ido et al., 2005; Okunishi et al., 2005) that exerts its effects through engagement of its ligand, hepatocyte growth factor (HGF). Notably, MET signaling induces a tolerogenic phenotype in innate immune cells without affecting their antigen presenting capabilities (Okunishi et al., 2005; Rutella et al., 2006). Interestingly, the gene encoding MET carries a common polymorphism, the rs1858830 ‘C’ allele, which is functional and increases the relative risk for autism approximately 2.25-fold (Campbell et al., 2006). Thus, the MET ‘C’ variant may predispose to the absence of down-regulation of innate immune cell activation in ASD, and that the combination of a MET polymorphism and increased response to TLR ligands could combine to increase susceptibility to loss of self-tolerance and increased immune responsiveness.
The MET stuff is very cool and isn’t going away; I need to do some more reading on it, but having a particular downregulating allele for MET increases your risk of autism in a subtle, but real fashion. The resultant molecule from MET, HGF, serves a lot of different functions, including neuron formation, gastrointestinal repair, and, as noted above, as an immunoregulator. The allele is still relatively common, close to one half of everyone has it, but it is, nonetheless, over represented in the autism population. It would seem that you need something else, (probably a lot of something elses) at a genetic level to really start increasing your risk of autism; and above the authors speculate that an inherited downregulatory immune control in conjunction with an upregulated immune response could be a example of multiple low penetrance genes interacting to more greatly increase risk of developing autism.
There are more papers on TLR responsiveness in autism, and other neurological conditions that I’d like to get too eventually, but this one is the most recent, and as a result benifits greatly from a larger base of knowledge from a variety of related areas. I’d like to read a lot of the papers listed as references here; they are all pieces of the puzzle, its just tough to see how they fit in.
– pD
Hello friends –
This post really ought to be Chapter 1, but since I wrote the other post first, and sort of liked the title, so we’ll just pretend; these posts are all about make believe in any case, right?
There is only one valid reason not to vigorously pursue environmental causes of autism; you need to believe that our observation of an increased rate of autism, one hundred percent of it, is an artifact of the four horsemen of the imaginary increase:
- Diagnostic Substitution
- Greater Awareness
- Increased Accessibility to Diagnosis
- Widening of Diagnostic Criteria
Lets start off with a couple of honest admissions and the reason they don’t make a whit of difference if our goal is to expose the notion of a static rate of autism as a fairytale, and a dangerous one at that.
- I have read very few papers regarding prevalence fully. In fact, I can’t think of the title of a single one. In the context of a precautionary principle, however, the methods and discussion for this type of study don’t really matter much; because the brush strokes used to craft the results are so necessarily broad and imprecise that they are admitted as meaningless even by people who believe in the fairytale. Think about it. The only way we have a static rate of autism is if all of our previous studies utilized methods of such poor quality that they missed ##-## per 100,000 cases of autism, where you get to replace ##-## with any set of numbers lower than 100 as you move backwards in time. The conclusions in our previous prevalence studies are so discordant over time that the flaws in their methodology are the super strings of the fairytale; responsible for all of our observations of increased autism rates while having natural physical properties that render them impossible to elucidate on completely. Given that even the proponents of the fairytale don’t give the methods of previous studies any currency, why should anyone?
- I cannot provide meaningful estimates on what percentage of the observed increase in rates is real versus artifact. Again, however, in the prism of a precautionary principle, it doesn’t matter, because any amount of real increase is alarming, and the only possible unalarming possibility is a zero percent increase. Here is a little thought exercise to illustrate this; imagine you are on a debate team and the topic is; “Autism rates have risen by X percent, health crisis or not?” and your team has drawn the ‘not a crisis’ side. Insert any number greater than zero for X, and then try to construct debate points to make this argument to a crowd of skeptics. This argument is implied whenever the fairytale is invoked, sometimes with the assertion that any real increase is “minor”, but one surefire way to get a storyteller to dissolve from a discussion is to try to get a value more concrete than “minor” for X. Autism is a disability, and while there are arguments to be made that it is also a ‘difference’, it isn’t a difference like having red hair or being left handed anymore than dyslexia is a different way of reading; any true increase has broad implications for us all.
- I have no doubt that the four factors listed above are, indeed, responsible to one degree or another towards what we are observing in autism rates. Unfortunately, unless we are able to explain our ever rising rates of autism completely with these explanations, we still must contend with ramifications of a true increase.
Even with the above caveats, a compelling case can be made that what we are observing is comprised of an actual increase in behaviors consistent with an autism diagnosis, and the argument that autism rates are static is long on faith and very low on the lifeblood of science; reliable data.
– pD