passionless Droning about autism

Archive for the ‘Purkinje’ Category

Hello friends –

A new paper  looking for evidence of an ongoing immune reaction in the brain of people with autism landed the other day, Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism

BACKGROUND: In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. METHODS: Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. RESULTS: Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. CONCLUSIONS: The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations.

This is a neat paper,  to my eye not  as comprehensive as the landmark paper on microglial activation, Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism Neuroglial Activation andNeuroinflammation in the Brain of Patientswith Autism, but still a very interesting read.  Here are the some areas that caught my eye.   From the introduction:

These results provide evidence for microglial activation in autism but stop short of demonstrating quantifiable microglial abnormalities in the cortex, as well as determining the nature of these abnormalities. Somal volume increases are often observed during microglial activation, reflecting a shift toward an amoeboid morphology that is accompanied by retraction and thickening of processes (13). Microglial density may also increase, reflecting either proliferation of resident microglia or increased trafficking of macrophages across a blood-brain barrier opened in response to signaling by cytokines, chemokines, and other immune mediators (13–16). These results provide evidence for microglial activation in autism but stop short of demonstrating quantifiable microglial abnormalitiesin the cortex, as well as determining the nature of these abnormalities. Somal volume increases are often observed during microglial activation, reflecting a shift toward an amoeboid morphology that is accompanied by retraction and thickening ofprocesses (13). Microglial density may also increase, reflecting either proliferation of resident microglia or increased trafficking of macrophages across a blood-brain barrier opened in response to signaling by cytokines, chemokines, and other immune mediators(13–16).

Tragically, my ongoing google based degree in neurology has yet to cover the chapters on specific brain geography, so the finer points, such as the difference between the middle frontal gyri and the neocortex are lost on me.  None the less, several things jump out at me from what I have managed to understand so far.  The shift to an ‘ameboid morphology’ is one that I’ve run into previously, notably in Early-life programming of later-life brain and behavior: a critical role for the immune system, which is a paper I really need to dedicate an entire post towards, but as applicable here, the general idea is that the microglia undergo structural and functional changes during times of immune response; the ‘ameboid’ morphology is associated with an active immune response.  Regarding increased trafficking of macrophages across the BBB, Vargas 2005  noted chemokines (MCP-1) increases in the CNS, so we do have reason to believe such signalling molecules are present.

The authors went on to look for structural changes in microglia, differences in concentration of microglia, and evaluated  for markers indicative of an acute inflammatory response.  Measurements such as grey and white matter volumes and relationships to microglia structural differences, and correlations with seizure activity were also performed.   There were three specimens from children under the age of six that were analyzed as a subgroup to determine if immune activation was present at early ages.   From the discussion section:

Moderate to strong alterations in Iba-1 positive microglial morphology indicative of activation (13,29) are present in 5 of 13 postmortem cases with autism, and mild alterations are present in an additional 4 of 13 cases. These alterations are reflected in a significant increase in average microglial somal volume in white matter and microglial density in gray matter, as well as a trend in microglial somal volume in gray matter. These observations appear to reflect a relatively frequent occurrence of cortical microglial activation in autism.

Of particular interest are the alterations present in two thirds of our youngest cases, during a period of early brain overgrowth in the disorder. Indeed, neither microglial somal volume nor density showed significant correlation with age in autism, suggesting long running alteration that is in striking contrast with neuronal features examined in the same cases (Morgan et al., unpublished data, 2009). The early presence of microglial activation indicates it may play a central pathogenic role in some patients with autism.

The authors evaluated for IL-1R1 receptor presence, essentially a marker for an inflammatory response, and found that the values did not differ between the autism population and controls, and that in fact the controls trended towards expressing more IL-1R1 than the autism group.  I think this was the opposite of what the authors expected to find.

While Iba-1 staining intensity increases modestly in activated microglia (30), strong staining and fine detail were apparent in Iba-1 positive resting microglia in our samples. Second, there is no increase in microglial colocalization with a receptor, IL-1R1, typically upregulated in acute inflammatory reactions (28). The trend toward an increase in colocalization in control cases may also hint at downregulation of inflammatory signal receptors in a chronically activated system.

I don’t think I’ve seen this type of detail in qualitative measures of the neuroimmune response in autism measured previously, so I definitely appreciate the detail.  Furthermore, from a more speculative standpoint, we may have some thoughts on why we might see this in the autism population specifically that I’ll go into detail below a little bit.

The authors failed to find a relationship between seizure activity and microglial activation, which came as a surprise to me, to tell the truth.  Also discussed was the large degree of heterogeneity in the findings in so far as the type and severity of microglial morphological differences observed.  The potential confounds in the study included an inability to control for medication history, and the cause of death, eight of which were drowning in the autism cases.  There was some discussion of potential causes, including, of course, gene-environment interactions, maternal immune activation, neural antibodies, and the idea that “chronic innate immune system activation might gradually produce autoimmune antibodies via the occasional presentation of brain proteins as antigens”  (!)  There was also this snipet:

Microglial activation might also represent an aberrant event during embryonic monocyte infiltration that may or may not also be reflected in astroglial and neuronal populations (17), given the largely or entirely separate developmental lineage of microglia (13). Alternatively, alterations might reflect an innate neuroimmune response to events in the brain such as excessive early neuron generation or aberrant development of neuronal connectivity.

There is a short discussion of the possible effects of an ongoing microglial immune response, including damage to neural cells, reductions in cells such as Purkinjes, and increases in neurotrophic factors such as BDNF.

This is another illustration of an ongoing immune response in the CNS of the autism population, though in this instance, only some of the treatment group appeared to be affected.  It would have been nice to see if there were correlations between behavioral severity and/or specific behavior types, but it would seem that this information is was not available in sufficient quality for this type of analysis, which is likely going to be an ongoing problem with post mortem studies for some time to come.   I believe that an effort to develop an autism tissue bank is underway, perhaps eventually some of these logistical problems will be easier to address.   The fact that some of the samples were from very young children provides evidence that when present, the neuroinflammatory response is chronic, and indeed, likely lifelong.

Stepping away from the paper proper, I had some thoughts about some of these findings that are difficult to defend with more than a skeletal framework, but have been rattling around my head for a little while.  Before we move forward, let’s be clear on a couple of things:

1) The jump from rodent to human is fraught with complications, most of which I doubt we even understand.

2) We can’t be positive that an activated neuroimmune system is the cause of autistic behaviors, as opposed to a result of having autism.  I still think a very strong argument can be made that an ongoing immune response is ultimately detrimental, even if it cannot be proven to be completely responsible for the behavioral manifestation of autism.

3) At the end of the day, I’m just Some Jerk On The Internet.

Those caveats made, Morgan et all spend a little time on the potential cause of a persistent neuroinflammatory state as referenced above.  One of the ideas, “an aberrant event during embyronic monocyte infiltration that may or may not also be reflected in astroglial and neuronal populations  given the largely or entirely separate developmental lineage of microglia”  struck me as particularly salient  when considered alongside the multitude of data we have concerning the difficult to predict findings regarding an immune insult during critical developmental timeframes.

We now have several papers that dig deeper into the mechanism by which immune interaction during development  seem to have physiological effects with some parallels to autism; specifically, Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain (Bland et all), and Early-Life Programming of Later-Life Brain and Behavior: A Critical Role for the Immune System (Bilbo et all) ; both of which share Staci Bilbo as an author and I think she is seriously onto something.  Here is the abstract for Bland et all:

Systemic infection with Escherichia coli on postnatal day (P) 4 in rats results in significantly altered brain cytokine responses and behavioral changes in adulthood, but only in response to a subsequent immune challenge with lipopolysaccharide [LPS]. The basis for these changes may be long-term changes in glial cell function. We assessed glial and neural cell genesis in the hippocampus, parietal cortex (PAR), and pre-frontal cortex (PFC), in neonates just after the infection, as well as in adulthood in response to LPS. E. coli increased the number of newborn microglia within the hippocampus and PAR compared to controls. The total number of microglia was also significantly increased in E. coli-treated pups, with a concomitant decrease in total proliferation. On P33, there were large decreases in numbers of cells coexpressing BrdU and NeuN in all brain regions of E. coli rats compared to controls. In adulthood, basal neurogenesis within the dentate gyrus (DG) did not differ between groups; however, in response to LPS, there was a decrease in neurogenesis in early-infected rats, but an increase in controls to the same challenge. There were also significantly more microglia in the adult DG of early-infected rats, although microglial proliferation in response to LPS was increased in controls. Taken together, we have provided evidence that systemic infection with E. coli early in life has significant, enduring consequences for brain development and subsequent adult function. These changes include marked alterations in glia, as well as influences on neurogenesis in brain regions important for cognition.

Bland et all went on to theorize on the mechanism by which an infection in early life can have such long lasting effects.

We have hypothesized that the basis for this vulnerability may be long-term changes in glial cell function. Microglia are the primary cytokine producers within the brain, and are an excellent candidate for long-term changes, because they are long-lived and can become and remain activated chronically (Town et al., 2005). There is increasing support for the concept of ‘‘glial priming”, in which cells can become sensitized by an insult, challenge, or injury,  such that subsequent responses to a challenge are exaggerated (Perry et al., 2003).

The authors infected some rodents with e-coli on postnatal day four, and then evaluated for microglial function in  adulthood.

We have hypothesized that the basis for early-life infection-induced vulnerability to altered cytokine expression and cognitive deficits in adulthood may be due to long-term changes in glial cell function and/or influences on subsequent neural development. E. coli infection on P4 markedly increased microglial proliferation in the CA regions of the hippocampus and PAR of newborn pups, compared to a PBS injection (Figs. 3 and 4). The total number of microglia, and specifically microglia with an ‘‘active” morphology  (amoeboid, with thick processes), were also increased as a consence of infection. There was a concomitant decrease in non microglial newborn cells (BrdU + only) in the early-infected rats, in the same regions.

Check that shit out! Rodents infected with E-coli during the neonatal period had an increased number of active microglia when compared to rodents that got saline as neonates.   Keep in mind that the backbone of these studies, and studies from other groups indicate that this persistence of effects are not specific to an e-coli infection, but rather, can be triggered by any immune response during critical timeframes.  In fact, at least two studies have employed anti-inflammatory agents, and observed an attenuation of effect regarding seizure susceptibility.

A final snipet from Bland et all Discussion section:

Although the mechanisms remain largely unknown, the ‘‘glial cell priming” hypothesis posits that these cells have the capacity to become chronically sensitized by an inflammatory event within the brain (Perry et al., 2003). We assessed whether glial priming may be a likely factor in the current study by measuring the volume of each counted microglial cell within our stereological analysis. The morphology of primed glial cells is similar to that of ‘‘activated” cells (e.g., amoeboid, phagocytic), but primed glial cells do not chronically produce cytokines and other pro-inflammatory mediators typical of cells in an activated state. There was a striking increase in cell volume within the CA1 region of adult rats infected as neonates (Figs. 2 and 8), the same region in which a marked increase in newborn glia was observed at P6. These data are consistent with the hypothesis that an inflammatory environment early in life may prime the surviving cells long-term, such that they over-respond to a second challenge, which we have demonstrated at the mRNA level in previous studies (Bilbo et al., 2005a, 2007; Bilbo and Schwarz, in press).

The concept of glial priming, close friends with the ‘two hit’ hypothesis (or soon to be, the multi-hit hypothesis?),  has some other very neat studies behind it, the coolest ones I’ve found so far are from a group at Northwestern, and include “hits” such as  Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulationEnhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a ‘two-hit’ seizure model and Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures.   Also the tragically, hilariously titled, Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis. (!)  These are potentially very inconvenient findings, the details for which I’ll save for another post.

Moving on to Bilbo et all, though a pure review paper than an experiment, it provides additional detailed theories on the mechanisms behind persistent effects of early life immune challenge.  Here’s the abstract:

The immune system is well characterized for its critical role in host defense. Far beyond this limited role however, there is mounting evidence for the vital role the immune system plays within the brain, in both normal, “homeostatic” processes (e.g., sleep, metabolism, memory), as well as in pathology, when the dysregulation of immune molecules may occur. This recognition is especially critical in the area of brain development. Microglia and astrocytes, the primary immunocompetent cells of the CNS, are involved in every major aspect of brain development and function, including synaptogenesis, apoptosis, and angiogenesis. Cytokines such as tumor necrosis factor (TNF)α, interleukin [IL]-1β, and IL-6 are produced by glia within the CNS, and are implicated in synaptic formation and scaling, long-term potentiation, and neurogenesis. Importantly, cytokines are involved in both injury and repair, and the conditions underlying these distinct outcomes are under intense investigation and debate. Evidence from both animal and human studies implicates the immune system in a number of disorders with known or suspected developmental origins, including schizophrenia, anxiety/depression, and cognitive dysfunction. We review the evidence that infection during the perinatal period of life acts as a vulnerability factor for later-life alterations in cytokine production, and marked changes in cognitive and affective behaviors throughout the remainder of the lifespan. We also discuss the hypothesis that long-term changes in brain glial cell function underlie this vulnerability.

Bilbo et all go on to discuss the potential for time sensitive insults that could result in an altered microglial function.  Anyone that has been paying attention should know that the concept of time dependent effects is, to my mind, the biggest blind spot in our existing research concerning autism and everyones favorite environmental agent.

Is there a sensitive period? Does an immune challenge early in life influence brain and behavior in a way that depends on developmental processes? Since 2000 alone, there have been numerous reports in the animal literature of perinatal immune challenges ranging from early gestation to the juvenile period, and their consequences for adult offspring phenotypes (see Table 1). It is clear that the timing of a challenge is likely a critical factor for later outcomes, impacting the distinct developmental time courses of different brain regions and their underlying mechanisms (e.g., neurotransmitter system development, synapse formation, glial and neural cell genesis, etc; Herlenius and Lagercrantz, 2004; Stead et al., 2006). However, the original question of whether these changes depend on development has been surprisingly little addressed. We have demonstrated that infection on P30 does not result in memory impairments later in life (Bilbo et al., 2006), nor does it induce the long-term changes in glial activation and cytokine expression observed with a P4 infection (Bilbo et al., unpublished data). The factors defining this “sensitive period” are undoubtedly many, as suggested above. However, our working hypothesis is that one primary reason the early postnatal period in rats is a sensitive or critical period for later-life vulnerabilities to immune stimuli, is because the glia themselves are functionally different at this time. Several studies have demonstrated that amoeboid, “macrophage-like”, microglia first appear in the rat brain no earlier than E14, and steadily increase in density until about P7. By P15 they have largely transitioned to a ramified, adult morphology. Thus, the peak in density and amoeboid morphology (and function) occurs within the first postnatal week, with slight variability depending on brain region (Giulian et al., 1988; Wu et al., 1992).  [emphasis theirs]

[Note:  The authors go on to state that this time period is likely developmentally equivalent to the late second, to early third trimester of human fetal development.]

We seem to have a growing abundance of evidence that immune stimulation in utero can have neurological impacts on the fetus that include schizophrenia, and autism.   In some instances, we have specific viral triggers; i.e., the flu or rubella, but  I’d further posit that we have increasing reason to believe that any immune response can have a similar effect.  The Patterson studies involving IL-6 in a rodent model of maternal activation seem to make this point with particular grace, as the use of IL-6 knockout mice attenuated the effect, as did IL-6 antibodies; and direct injection of IL-6 in the absence of actual infection produced similar outcomes.  In animal models designed to study a variety of effects, we have a veritable spectrum of studies that tell us that immune insults during critical developmental timeframes can have lifelong effects on neuroimmune activity, HPA-axis reactions, seizure susceptibility, and ultimately, altered behaviors.  I believe that we are rapidly approaching a point where there will be little question as towards if a robust immune response during development can lead to a developmental trajectory that includes autism, and will instead be faced with attempting to detangle the more subtle, and inconvenient, mechanisms of action, temporal windows of vulnerability, and indeed if there are subgroups of individuals that are predisposed to be more likely to suffer from such an insult.

Another thing that struck me about Morgan was the speculation that an increased presence of IL-1R in controls may have been suggestive of an attempt to muzzle the immune response in the case group; repeated from Morgan “The trend toward an increase in colocalization in control cases may also hint at downregulation of inflammatory signal receptors in a chronically activated system.” In other words, for controls it wasn’t a big deal to be expressing IL-1R in a ‘normal’ fashion, because the immune system is in a state of balance.  Another way of looking at our observations would be to ask the question as towards what has caused the normally self regulating immune system to fail to return to a state of homeostasis?   Ramping up an immune response to fight off pathogens and ratcheting back down to avoid unnecessary problems is something most peoples immune systems do with regularity.  Is the immune system in autism trying to shut down unsuccessfully?

There are clues that the homeostatic mechanisms are trying to restore a balanced system.  For example, in Immune transcriptome alterations in the temporal cortex of subjects with autism, researchers reported that the genetic pathway analysis reveals a pattern that could be consistent with “an inability to attenuate a cytokine activation signal.” Another paper that I need to spend some read in full, Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression describes a genetic and expression based study that concludes, in part, that downregulation of PRKCB1 “could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process“.

If we look to clinical evidence for a decreased capacity to regulate an immune response, one paper that might help is Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes, the authors report an inverse dose relationship between peripheral levels of an important immune  regulator, TGF-Beta1,  and autism severity; i.e., the less TGF-Beta1 in a subject, the worse the autism behaviors [the autism group also, as a whole, had less TGF-Beta1 than the controls].

And then, in between the time that Morgan came out, and I completed this posting, another paper hit my inbox that might provide some clues,a title that is filled to the brim with autism soundbytes, “Effects of mitochondrial dysfunction on the immunological properties of microglia“.  The whole Hannah Poling thing seemed so contrived to me, basically two sets of people trying to argue past each other to reach a predetermined conclusions, and as a result, I’ve largely shied away from digging too deeply into the mitochondrial angle.  This may not be a luxury I have anymore after reading Ferger et all.   For our purposes, lets forget about classically diagnosed and acute mitochonrdrial disease, as Hannah Poling supposedly has, and just acknowledge that we have several studies that show that children with autism seem to have signs of mitochondrial dysfunction, as I understand it, sort of a halfway between normal mitochondrial processing and full blown mitochondrial disorder.  Given that, what does Ferger tell us?  Essentially an in vitro study, the group took microglial cells from mice, exposed some of them to toxins known to interferre with the electron transport chain, and exposed the same cells to either LPS or IL-4 to measure the subsequent immunological response.  What they observed was that the response to LPS was unchanged, but the response to IL-4, was blunted; and pertinently for our case, the IL-4 response is a so called ‘alternative’ immune response, that participates in shutting down the immune response.  From the conclusion of Ferger:

In summary, we have shown that mitochondrial dysfunction in mouse microglial cells inhibit some aspects of alternative activation, whereas classic activation seems to remain unchanged. If, in neurological diseases, microglial cells are also affected by mitochondrial dysfunction, they might not be able to induce a full anti-inflammatory alternative response and thereby exacerbate neuroinflammation. This would be associated with detrimental effects for the CNS since wound healing and attenuation of inflammation would be impaired.

If our model of interest is autism, our findings can begin to fit together with remarkable elegance.  And we haven’t even gone over  our numerous studies that show the flip side of the immunological coin; that children with autism have been shown time and time again to have a tendency towards an exaggerated immune response, and increased baseline pro-inflammatory cytokines when compared with their non diagnosed peers!

Anyways, those are my bonus theoretical pontifications regarding Morgan.

– pD

Advertisement

Hello friends –

I ran into a few abstracts,  read a few papers, and tried to get my way through one really dense paper in the past few weeks that got me thinking about this post.  It’s  all shook up, like pasta primavera in my head, but hopefully something cogent will come out the other end.  (?)

Of the metabolic conditions known to be associated with having a child with autism, hypothyroidism is one that I keep on running into by way of the pubmed alert grapevine.  By way of example, we have two studies that looked for autoimmune conditions in family members which found hypothyroidism to be one of many autoimmune diseases as a risk factor for autism, including,  Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism, and Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders.   This shouldn’t be too surprising, we know that, for example, perinatal hypothyroidism is a leading cause of mental retardation, with similar findings for the condition during pregnancy.  It turns out, it appears that rates of hypothyroidism are slightly increasing, though at this time, the increases are of relatively small proportions, and as such, may be artifacts unrelated to an actual increase in classically recognized hypothyroidism.  In any case, I think it is safe to say that interference with thyroid metabolism is something to be avoided at all costs when possible.

So after having read about that, this paper showed up in my inbox a while ago:

Effects of perinatal hypothyroidism on regulation of reelin and brain-derived neurotrophic factor gene expression in rat hippocampus: Role of DNA methylation and histone acetylation

Thyroid hormones have long been known to play important roles in the development and functions of the central nervous system, however, the precise molecular mechanisms that regulate thyroid hormone-responsive gene expression are not well understood. The present study investigated the role of DNA methylaion and histone acetylation in the effects of perinatal hypothyroidism on regulation of reelin and brain-derived neurotrophic factor (BDNF) gene expression in rat hippocampus. The findings indicated that the activities of DNA methyltransferase (DNMT), methylated reelin and BDNF genes were up-regulated, whereas, the activities of histone acetylases (HAT), the levels of global acetylated histone 3 (H3) and global acetylated histone 4 (H4), and acetylated H3, acetylated H4 at reelin promoter and at BDNF gene promoter for exon II were down-regulated in the hippocampus at the developmental stage of the hypothyroid animals. These results suggest that epigenetic modification of chromatin might underlie the mechanisms of hypothyroidism-induced down-regulation of reelin and BDNF gene expression in developmental rat hippocampus

This gets interesting for autism because reelin, and bdnf levels have been found to be decreased in several studies in the autism population, with direct measurements, genetic expression, mouse knockout based models of autism , and genomic alterations all being implicated.  There have been some negative genetic studies, but considering that it isn’t always the genes you have, but the genes you use, our other available evidence certainly points to BDNF and reelin involvement with some percentage of children with autism, and the association is such that a reduction in reelin or BDNF is a risk factor for developing autism.  It would seem that the paper above might give some insight into the lower level details of the effects of hypothyroidism and subsequent developmental trajectories; modifications of reelin expression; through epigentic mechanisms, no less!.  That’s pretty cool!

Then, I got my hands on a review paper that tries to go into detail as to the functional mechanism by which reelin deficiency could contribute to ASD, Neuroendocrine pathways altered in autism. Special role of reelin.  It is a review that touches on a variety of ways that reelin contributes to neurodevelopment that have findings in the autism realm, including neuronal targeting and migration during brain formation, interactions with the serotonin and GABA systems, testosterone, and oxytocin.   In short, there are plenty of ways that decreased reelin expression can impact development in ways that mirror our some of our observations in autism.

Of the many things that convince me that we are doomed, the proliferation of chemical compounds whose interactions within our bodies we scarcely understand is among them.   In my readings on endocrine disruptors, one thing I found that seemed to be worrying lots of researchers was that some classes of these chemicals are capable of interfering with thyroid metabolism, and in some cases interfering with development of cells known to be associated with autism.    Terrifyingly enough, since I read those papers, several others have come out, including Polybrominated Diphenylether (PBDE) Flame Retardants and Thyroid Hormone during Pregnancy and Mini-review: polybrominated diphenyl ether (PBDE) flame retardants as potential autism risk factors.     At this point, it is important to point out that, as far as I know, there have not been any studies showing that non occupational exposure to PDBEs or other environmental pollutants can lead to classically defined hypothyroidism, at least none that I know of. (?)    Be that as it may, I think it is realistic to assume any interference in thyroid metabolism is a bad thing, and while finding people in the outlier regions of hypo (or hyper) thyroidism gives us information on extreme environments, it would take someone with a lot of misplaced faith to assume that we can safely disturb thyroid metabolism just a little bit, and everything will come out in the wash.

I’ve had the argument made to me in the past that environmental pollutant driven increases in autism lacked biological plausible mechanisms; this argument is almost always made within a context of trying to defend the concept of a static rate of autism.  While the papers I’ve linked to above do not provide conclusive proof that our changing environment is causing more children to be born with autism, they do provide increasing evidence of a pathway from pollutants to ASD, and indeed,  the lack of biological plausibility becomes an increasingly flacid foundation on which to assume that our observations of an increased rate of autism are illusory.   Unfortunately, in my opinion, the focus on vaccines has contributed to the mindset that a static rate of autism (or nowadays, maybe a tiny increase), must be protected at all costs, including some ideas on the application of a precautionary principle that seem outright insane to me (or at least, the exact opposite of what I would consider to be a precautionary path).

One thing is for certain, the number of child bearing women in developing countries with measurable concentrations of chemicals known to interferre with thyroid metabolism nears 100% in the industrialized nation as we eat , drink, breathe and bathe in the microscopic remnants of packaging materials, deteriorating carpet fibers, and baby clothes that are made to be fire resistant.  This is an environment unambiguously different than that encountered by any other generation of infants in the history of mankind.  To believe that we can modify our environment so drastically without having an impact seems incredibly naive to me, or on some days, just plain old stupid.

– pD

Hello friends –

So this is a really cool paper by some folks that have a series of interesting stuff:  Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain.  Here is the abstract:

Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.

 [As always, any emphasis is my own.]

This group has published a couple of papers that utilized similar study groups, methodologies, and means to display their findings, all of which I would recommend to anyone interested in learning; specifically, Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes [full paper available!], Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism [full version available!], and Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis [full paper available!]. 
There are a couple of things I really like about their methodology and presentation style. 

1) Several studies, including the most recent, included twins with discordant autism severity as study participants as a way to gain insight into the impact of genetic expression, as opposed to genetic structure on autistic behaviors.  The highly cited heritability of autism in twins is used as evidence that the condition is predominantly mediated through genetics, and while no doubt genetic structure is important, by using genetic clones with different manifestations of autism severity, the authors are able to ascertain information about which genes are being affected in twins. 

2) The two stage nature of the study design allows for both large scale analysis of a great number of genes being expressed differentially by genome wide scan, the results of which can be used for highly targeted confirmation by tissue analysis.  Further, the use of cells available in the periphery, lymphobastoid cell lines (LLCs) as measurement points for genetic expression, allows for well thought out investigations of a very rare resource, post morten brain tissue from autistics.  In this instance, different methylation profiles identified from LLCs from blood samples gave the researchers a starting point for what to look for in the brain tissue. 

3) This paper ties together both genetic expression and epigenetics; i.e., not only that genes are being used differently, but it forwards our understandings of the means by which this is happening.  Earlier studies by this group have found differences in genetic expression previously, but hadn’t elucidated on the specific mechanisms of action, in this case, over methylation, and consequent silencing of genetic protein production. 

4) This is the first group of papers I’ve seen that have been using a bioinformatics approach to understanding the pathways affected by their findings; there may be other papers out there in the autism realm, (and almost certainly in others), that have been performing this type of analysis, but I haven’t run into them.  Several of their papers, including the circadian rhythm paper, provide illustrations of associations to biological conditions and pathologies associated with affected networks.  Here is an example from the latest paper.  (Sarcastic apologies for those running at 800 / 600)
 This type of illustration is the death knell for the argument that autism is a condition to be handled by psychologists; there are a couple of similar ones in the paper. 

Considering those points, here are some juicy parts from the paper itself.  From the introduction:

In this study, we use global methylation profiling of discordantly diagnosed monozygotic twins and their nonautistic siblings on CpG island arrays to test the hypothesis that differential gene expression in idiopathic autism is, at least in part, the result of aberrant methylation. Our study reveals distinct methylation differences in multiple genes between the discordant MZ twins as well as common epigenetic differences distinguishing the twins (the undiagnosed twin exhibiting milder autistic traits that are below the threshold for diagnosis) from nonautistic sibling controls.

There are essentially three groups, twins with different autism severity, and non autistic siblings.  One thing that I’m not cerrtain of here is whether or not there were methylation differences found between the twins and their non autistic siblings or not; the text above is a little unclear; i.e., as there are different mechanisms by which genetic expression can be modified besides methylation, this may mean that while there were expression differences found between autism and controls, those differences were not found to be attributed to differential methylation levels.  (?)

From the results:

Network analysis was then performed to examine the relationship between this set of genes and biological processes. As shown in Fig. 1B, many of the associated processes within the network, including synaptic regulation, fetal development, morphogenesis, apoptosis, inflammation, digestion, steroid biosynthesis, and mental deficiency, have been associated with autism. Two genes from this network, BCL-2 and RORA, were selected for further study because of their respective roles in apoptosis and morphogenesis/inflammation. Interestingly, BCL-2 protein has been previously demonstrated to be reduced in the cerebellum and frontal cortex of autistic subjects relative to control subjects (31, 32), but RORA, a nuclear steroid hormone receptor and transcriptional activator that is involved in Purkinje cell differentiation (33) and cerebellar development (34), has never before been implicated in autism. In addition, RORA, a regulator of circadian rhythm (35), is also neuroprotective against inflammation and oxidative stress (36), both of which are increased in autism (37, 38).

Several of the tables are pretty cumbersome to paste in, but do provide more detailed functional level impacts of some of the functions of the differentially methylated genes identified.  Even with the text above, however, we can see a lot of sweet spots being touched on, including several that were identified in previous studies by this group of researchers.  It also illustrates some of the very powerful techniques in use; a broad array of genes were scanned for differential expression, some with different expression and significant roles in processes known to be abnormal in the autism population are identified, and used for further, more pinpointed analysis. 

As noted, Fatemi found reduced BCL-2 in post mortem brain samples in two studies; one of the roles played by BCL-2 is apoptosis, or programmed cell death.  By way of example, here is a study that shows that knockout (or in this case, knockup) mice that overexpress BCL-2 have more Purkinje cells than their non modified counterparts, which states, in part:

Because bcl-2 overexpression has been shown to rescue other neurons from programmed cell death, the increase in Purkinje cell numbers in overexpressing bcl-2 transgenics suggests that Purkinje cells undergo a period of cell death during normal development.

Considering that reductions in Purkinje cells is among the most commonly found brain difference in autism, a reduction in BCL-2 seems appropriate.  The fact that it in this case it was methylation levels leading to a reduction in BCL-2 might also be of interest in regards to the Fairytale Of The Static Rate of Autism; here we have evidence that mechanisms other than genetic structure are leading to decreases in a protein known to protect Purkinje cells from apoptosis.  

I don’t know anything about RORA, but its list of functions make a lot of sense when we consider other findings; a relative dearth of a protein known to protect against neuroinflammation and oxidative stress and a regulatory role in the sleep cycle.

The authors also noticed a dose dependent relationship between expression levels, which in this case represented a silencing of genes and autism severity. 

Quantitative RT-PCR was used to confirm decreased expression of BCL-2 and RORA in autistic samples and to evaluate the effect of a global methylation inhibitor, 5-Aza-2-deoxycytidine, on gene expression. For both BCL-2 and RORA, gene expression was significantly higher (P_0.05) in the unaffected control than autistic co-twins (Fig. 4A). Generally, the diagnosed autistic co-twin (_A) had the lowest level of expression of BCL-2 and RORA, while the milder undiagnosed co-twin (_M) exhibited transcript levels between that observed for unaffected sibling controls and autistic co-twins. This suggests a quantitative relationship between phenotype and gene expression of these 2 genes, although additional studies are required to confirm this observation

Again, this makes plenty of sense if we believe that things like a neuroinflammation, oxidative stress have parts to play in the behavioral manifestation of autism; in this case, get more methylation, and hence, less RORA and BCL-2, which, in turns, makes you more susceptible to neuroinflammation, oxidative stress, and Purkinje cell development abnormalities. 

If we take the predisposition towards problems with inflammation for a closer look, we can find that several other papers, including Grigorenko, Enzo, and Ashwood have all found that a propensity for inflammation, or a propensity towards abnormal regulation of inflammation have correlations with autism severity.  Though potentially inconvenient, this would seem to lend additional evidence for a causal role of immune based pathology in autism, as opposed to autism causing immune abnormalities. 

The discussions section has a lot of good text that is largely a touch up on what we already have here.  Here are some good quotes:

In particular, functional and pathway analyses of the differentially  methylated/expressed genes showed enrichment of genes involved in inflammation and apoptosis, cellulardifferentiation, brain morphogenesis, growth rate, cytokine production, myelination, synaptic regulation, learning, and steroid biosynthesis, all of which have been shown to be altered in ASDs. The candidate genes were prioritized for further analyses by identifying the overlap between the differentially methylated genes and those that had been shown to be differentially expressed in the same set of samples in previous gene expression analyses (18). Pathway analyses of this filtered set of genes thus focused our attention on 2 genes, BCL-2 and RORA, as potential candidate genes for ASDs whose expression may be dysregulated byaberrant methylation.  As shown in Figs. 3 and 4, respectively, RORA was confirmed to be inversely differentially methylated and expressed in LCLs from autistic vs. nonautistic siblings,with expression dependent on methylation, as demonstrated by the absence of methylation in the presence of 5-Aza-2-deoxycytidine. Notably, we also show by immunohistochemical staining of cerebellar and frontal cortex regions of autistic vs. normal brain (Figs. 5, 8), that RORA protein is noticeably reduced in the majority ofthe autistic samples relative to age- and sex-matched controls. This reduction is also specifically demonstrated in Purkinje cells, which are dependent on RORA for both survival and differentiation (Fig. 7). These findings thus link molecular changes identified in a peripheral cell model of ASDs to actual pathological changes in the autistic brain, suggesting that LCLs is an appropriate surrogate for studies on autism.

Finally, this paper generated a lot of press, in part (I think), because somewhere, someone (the authors?), apparently made note of the fact that this type of feature, hypermethylation, is potentially treatable, raising the possibility of palliative avenues.  (Or was this just a function of the fact that it was a finding that wasn’t truly genetic, and thus, ‘fixable’?)  While technically true, I am of the opinion that this is a long ways off; the authors found large numbers of differentially methylated genes; some were also hypomethylated.  The drugs that we know are capable of epigenomic modifications right now, some are used in advanced cancer patients, for example, are not discriminatory in their actions.  What we really would need would be targeted unmethylators that we could use to attach to RORA and BCL-2 genes and specifically free them up to produce more protein.  The same week that this paper came out, another paper was published, entitled Epigenetic approaches to psychiatric disorders which speaks towards this complexity. 

–      pD


Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 36 other subscribers