Archive for the ‘Pruning’ Category
The Biologically Plausible Model Of Perturbed Microglial Colonization And Developmental Trajectories Participating In (Some Cases Of) Autism And The Ribs Hypothesis Of Maternal Inflammation And Causation, Or, Venturing Into Uncharted Realms Of Guessing
Posted February 3, 2013
on:- In: Autism | Beautiful Complexity | Bilbo | Developmentall Programming | Early Life Immune Activation | Glial Priming | Humbling Complexity | Immunology | Inflammation | LPS | Microglia | microglia colonization | microglial proliferation | Mr. Rat | Phenotypes | Primed Phenotype | Proliferation | Pruning | Synapse | Uncategorized
- 9 Comments
Hello Friends – There are (at least) two big
classifications of microglia findings in autism, an altered
morphology (i.e., shape and function, or ‘activated’ versus
‘quiescent’), and an increased number (i.e., more), with both
parameters varying with each other and spatially. In other
words, disparate parts of the brain have different numbers of
microglia in them, and the functional profile of those microglia
also varies from one area to another.
[Note: There is ongoing
discussion regarding the appropriate definition of
‘activation’ of microglia, with evidence of (at least) four states
of microglial morphology.] Recently I saw a discussion on the SFARI
site about the fancy in
vivo study of microglia numbers in high functioning males with
autism. (I believe I am growing
increasingly jaded, as it occurs to me that radio tracing against
[11C](R)-PK11195) to
show microglial activation is a fancy trick, but one leaving us
open to detecting other stuff too.) In any case, the findings
are not especially unexpected by now, well not to me anyways, but a
comment at the SFARI site really got me thinking about the chain of
events that could lead to different spatial and
morphological characteristics of microglia. Perhaps we could
gain insight into the question of what the microglia are doing by
trying to understanding how they got there. Do we have any
biologically plausible models that might educate us on how a
different morphology and distribution of microglia could be
achieved? A while ago I got a copy of a few
articles that don’t have autism in them per se, but they kept
coming to the forefront of my mind when I thought about that
question. The first is Distribution
of microglia in the postnatal murine nigrostriatal
system, which had a disease focus on
Parkinson’s, but what really grabbed my attention is what they
learned about the developmental pathway microglia took to populate,
and then depopulate the substantia nigra (SN), a little wedge of
brain involved with motor skills, reward seeking, and addiction.
Interestingly, the SN
has been shown to contain more microglia than
adjacent structures. We have analysed
changes in microglia numbers and in microglial morphology in the
postnatal murine nigrostriatal system at various stages ranging
from postnatal day 0 (P0) up to 24 months of age. We
clearly show that the microglia numbers in the SN and in the
striatum dramatically increase from P0 to P15 and
significantly decrease in both areas in 18-month-old and
24-month-old animals.
[Note: There seems to be
some variance in the appropriate ‘rat-to-human-age’ approximations;
especially when trying to do something as
expeditionary as comparing brain development. We should
extrapolate only with caution.] The part that makes me grin is that
it illustrates our nascent understanding of the process of
microglial colonization into the CNS, the hows,
whens, wheres, and whys are still
shrouded in mystery. The broadest outlines tell us that microglial
penetration into the brain is a long running, dynamic process; the
microglia are slow infiltrators, gaining access into parts of the
brain in concert with a swath of proliferating and inhibitory
factors, all at a time of once in a lifetime neurodevelopmental
modifications. Regulation
of postnatal forebrain amoeboid microglial cell proliferation and
development by the transcription factor Runx1 paints a
beautiful portrait of functionality. Runx1 is a chemical
messenger that participates in phenotyopic determination of blood
cell progenitors into mature cells. The researchers observed
spatial, time dependent expression of Runx1 in the developing
forebrain, and differential levels following injury.
Here we show that the mouse
transcription factor Runx1, a key regulator of myeloid
cell proliferation and differentiation, is expressed in forebrain
amoeboid microglia during the first two postnatal weeks.
Runx1 expression is then downregulated in ramified microglia. Runx1
inhibits mouse amoeboid microglia proliferation and promotes
progression to the ramified state. We show further that
Runx1 expression is upregulated in microglia following nerve injury
in the adult mouse nervous system. These findings provide
insight into the regulation of postnatal microglia activation and
maturation to the ramified state and have implications for
microglia biology in the developing and injured brain.
It doesn’t really tell us much about a
persistent change in microglia per se, but it does render a picture
of proliferation and differentiation as an easily
disrupted symphony. When we think about the
developing brain, I won’t pretend to have more than a lightyear
close guess at what microglia might be doing
differently between amoeboid and ramified
morphologies in this locale, at this time, but I
very highly doubt there isn’t
a functional impact on microenvironment neurodevelopment; our
developing brains are using opportunities like the Indians used the
buffalo, no waste, no excess, and because balance is important,
everything is important. Moving back to the
question of the plausibility of a pathway to the autism state,
luckily (or unluckily?) the literature is veritably littered with
insults that perturb microglial development, leading to
persistent changes to microglial morphology, ultimately
percolating up to behavioral changes. Prenatal stress is a bad, bad
thing, and here is a study that finds that extreme mice stress can
persistently alter the mice activation profile of mice microglia.
Prenatal
stress increases the expression of proinflammatory cytokines and
exacerbates the inflammatory response to LPS in the hippocampal
formation of adult male mice, was just published, and
comes wrapped up with a double hit, and
different resting and stimulated neuroimmune environments.
Under basal conditions,
prenatally stressed animals showed increased expression of
interleukin 1ß and tumor necrosis factor-a (TNF-a) in the
hippocampus and an increased percentage of microglia cells with
reactive morphology in CA1 compared to non-stressed males.
Furthermore, prenatally stressed mice showed increased TNF-a
immunoreactivity in CA1 and increased number of Iba-1
immunoreactive microglia and GFAP-immunoreactive astrocytes in the
dentate gyrus after LPS administration. In contrast, LPS did not
induce such changes in non-stressed animals. These
findings indicate that prenatal stress induces a basal
proinflammatory status in the hippocampal formation during
adulthood that results in an enhanced activation of microglia and
astrocytes in response to a proinflammatory
insult.
Note: I have not read this
paper so I do not know if a qualitative number of microglia, or
just more immune-targeted microglia were found, but likely the
latter. A similar, full free paper, Prenatal
stress causes alterations in the morphology of microglia and the
inflammatory response of the hippocampus of adult female
mice, found broadly similar results; perturbed resting
and stimulated states in the treatment group.
Prenatal stress, per se,
increased IL1ß mRNA levels in the hippocampus, increased the total
number of Iba1-immunoreactive microglial cells and increased the
proportion of microglial cells with large somas and retracted
cellular processes. In addition, prenatally stressed and
non-stressed animals showed different responses to peripheral
inflammation induced by systemic administration of LPS.
LPS induced a significant increase in mRNA levels of IL-6,
TNF-a and IP10 in the hippocampus of prenatally stressed mice but
not of non-stressed animals.
Going back to my
ramblings on glial priming, it seems that here we have an
example of a type of cross system priming (sweet!), where
disturbing the stress response system changed the immune system;
such is the way of the polyamorous chemical families interacting in
our brain. It also occurs to me that given the
delicate nature of the developing brain, and the
crazy important
tasks going on in there, we might want to think very
carefully before we ‘induced a significant increase in
mRNA levels of IL-6, TNF-a and IP10 in the hippocampus‘
on subgroups who might be environmentally predisposed to react with
exaggerated vigor. But what do I know? Of course, the
prenatal immune challenge arena holds a ton of studies on
persistent microglial function, and ‘consequences’. There are
way too many to list, but a quick overview of some very recent ones
would include: Enduring
consequences of early-life infection on glial and neural cell
genesis within cognitive regions of the brain, an early
life real infection model with e coli that
concludes, “Taken together, we have provided evidence that
systemic infection with E. coli early in life has significant,
enduring consequences for brain development and subsequent adult
function.” (Staci Bilbo!) This paper was sort
of a quinella, as it showed both changes in immune responsiveness
into adulthood; it also demonstrated the ability
of an immune insult to alter
the developmental trajectory of the
microglia, i.e., E. coli increased the number of newborn
microglia within the hippocampus and PAR compared to controls. The
total number of microglia was also significantly increased in E.
coli-treated pups, with a concomitant decrease in total
proliferation. Neonatal
lipopolysaccharide exposure induces long-lasting learning
impairment, less anxiety-like response and hippocampal injury in
adult rats very directly blasted rats with some LPS
immune activation action, and includes, ”Neonatal LPS
exposure also resulted in sustained inflammatory responses in the
P71 rat hippocampus, as indicated by an increased number of
activated microglia and elevation of interleukin-1ß content in the
rat hippocampus.” (Sound familiar?) Interleukin-1
receptor antagonist ameliorates neonatal lipopolysaccharide-induced
long-lasting hyperalgesia in the adult rats took the
extra step of adding a set of animals that got inhibited
inflammatory responses. Results are increasingly
unsurprising.
Neonatal
administration of an IL-1 receptor antagonist (0.1mg/kg)
significantly attenuated long-lasting hyperalgesia induced by LPS
and reduced the number of activated microglia in the adult rat
brain. These data reveal that neonatal intracerebral LPS
exposure results in long-lasting hyperalgesia and an elevated
number of activated microglia in later life. This effect is similar
to that induced by IL-1ß and can be prevented by an IL-1 receptor
antagonist
I love how (once again) we
can see how interrupting the immune response can have an effect.
Environmental impacts outside of the immune
activation realm may also find a place within the ‘big tent’ of
microglial agitation with consequent developmental impacts.
The people who made the first big neuroimmune / autism splash at
Johns Hopkins later came out with Neuroinflammation
and behavioral abnormalities after neonatal terbutaline treatment
in rats: implications for autism, which found that an
agent used to prevent labor in some situations could
“produced a robust increase in microglial activation on PN
30 in the cerebral cortex” in treatment animals.
The drug in question, terbutaline, has been weakly associated with
increased incidence of autism, i.e., Prenatal
exposure to ß2-adrenergic receptor agonists and risk of autism
spectrum disorders, and beta2-adrenergic
receptor activation and genetic polymorphisms in autism: data from
dizygotic twins. And now, in 2013, Beta-adrenergic
receptor activation primes microglia cytokine production,
displays another example of cross system
priming.
To determine
if ß-AR stimulation is sufficient to prime microglia, rats were
intra-cerebroventricularly administered isoproterenol (ß-AR
agonist) or vehicle and 24h later hippocampal microglia were placed
in culture with media or LPS. Prior isoproterenol treatment
significantly enhanced IL-1ß and IL-6, but not TNF-a production
following LPS stimulation. These data suggest that central
ß-AR stimulation is sufficient to prime microglia cytokine
responses.
In other words, they gave
the rats a drug in the class of terbutline, and subsequently
observed an increased microglia responsiveness in cultured
cells. What a crazy coincidence. Detecting total
populations of microglia in adulthood, either regionally
or in the brain as a whole is a little more difficult, the little
buggers are a lot easier to detect when we light them up with neon
green tracers that stick to proteins expressed at ‘activation’
time, and it just doesn’t look like the question has been asked too
many times. I did, however, find something that has a sort of
chip shot on this analysis, Prenatal
stress alters microglial development and distribution in postnatal
rat brain, which looked at regional microglia populations
and phenotypes at two time periods following prenatal stress
events.
Prenatal
stress consisting of 20 min of forced swimming occurred on
embryonic days 10–20. On postnatal days 1 and 10, stressed and
control pups were killed. Microglia were identified using Griffonia
simplicifolia lectin and quantified in the whole encephalon.
In addition, plasma corticosterone was measured in dams at
embryonic day 20, and in pups on postnatal days 1 and 10.
At postnatal day 1, there was an increase in number of
ramified microglia in the parietal, entorhinal and frontal
cortices, septum, basal ganglia, thalamus, medulla oblongata and
internal capsule in the stressed pups as compared to controls, but
also there was a reduction of amoeboid microglia and the total
number of microglia in the corpus callosum. By postnatal
day 10, there were no differences in the morphologic type or the
distribution of microglia between the prenatal stress and control
groups, except in the corpus callosum; where prenatal stress
decreased the number of ramified microglia. The stress procedure
was effective in producing plasma rise in corticosterone levels of
pregnant rats at embryonic day 20 when compared to same age
controls. Prenatal stress reduced the number of immature
microglia and promoted an accelerated microglial differentiation
into a ramified form.
They did a lot
of clever stuff at analysis time, taking samples from several
locations after birth and ten days later, and
also did some fine grained classification of the
shape of the microglia. They include spatial and temporal
mappings of four microglial developmental profiles. It looks
as if prental stress was able to alter the developmental speed of
microglia from one morphology to another in different parts of the
brain. There was as small section in the discussion that
speculated on what such changes might mean for neurodevelopment.
Given that during the
early postnatal period occur numerous brain developmental processes
(e.g. neurogenesis, myelination, synaptogenesis, astrogliogenesis,
neuronal cell death and blood–brain barrier maturation) [6, 19, 22,
25, 36, 52] it is possible that altered microglial
development induced by in utero stress may affect other
developmental processes either changing microenvironment molecular
constitution or triggering earlier inflammatory changes secondary
to the blood–brain barrier opening induced by prenatal
stress . Although punctual, the altered microglial
development might alter extensively the other
neurodevelopmental processes ensuing perdurable
structural changes; for example it is possible that the
change in the distribution pattern of microglia in the prenatal
stress group may render vulnerable some neuroanatomic
regions due to the reduction of neurotrophic factors,
such as the corpus callosum where there is a continuous axonal
growth
No kidding! [There is also some very
interesting notes regarding microglial participation in purkinje
cell death that deserves and entire post. . .] This should be the
point that any rational observer must accept that we several lines
of evidence that early life experiences can persistently alter
microglial function with plausible mechanisms that could affect
neurodevelopment. Our data concerning total population
numbers in adulthood is a lot more difficult to come by, but I
think this will probably be getting looked at soon enough. Of
course, in any particular individual it is difficult (or
impossible?) to know how they may have arrived at a state of
increased microglial activation, but at the same time, it is not as
if we have no clue on possible pathways to this destination; our
short list of environmental factors includes immune insult, stress,
and chemical agents. If the question is, ‘what are the microglia
doing in the autism population?’, one plausible answer is ‘their
phenotype was persistently altered by an early life event through a
developmental programming model’. As I was mulling all of this
over, two things happened. First, a maternal CRP
study came out, and found a pretty strong relationship
between direct measurements of mommy inflammation with increased
risk of baby autism. The nice part is that they had a
gigantic data set (1.2M births!) to work with thanks to a few
decades of single payer medicine. (Very
nice!)
For maternal CRP
levels in the highest quintile, compared with the lowest quintile,
there was a significant, 43% elevated
risk. This finding suggests that
maternal inflammation may have a significant role in autism, with
possible implications for identifying preventive strategies and
pathogenic mechanisms in autism and other neurodevelopmental
disorders.
Just after that paper came out, I
made some Fred Flintstone style beef ribs. I ‘primed’ the
meat with a Moroccan inspired spice rub overnight, then
slow, slow, slow cooked them with a
low, low, low heat all day
long, and blasted away with a date glaze under the
broiler just before go time and they were caveman style
primal fucking awesome. The key to arriving there
was the slow cooking. The rib preparation
process got me thinking about our population wide experiment
in replacing infection with inflammation where we have
traded in death by pathogens or other once fatal ailments in
exchange for a longer life frequently plagued by conditions
associated with higher inflammation. Our analysis on long
term alterations to microglial proliferation and morphology is
largely comprised of studying acute insults
(sound familiar?), i.e., injection of purified bacterial cell
components known to trigger a robust immune response, ten sessions
of mouse based pregnant forced swimming, or exposure to chemicals
with rare and particular exposure routes in humans. Mostly I
think this is due to the black swan nature of the developmental programming
model alongside the very new idea that microglia are
doing jobs other than responding to infections; our models are
crude because of our relative ignorance. What will we find
when our filters are appropriately powered to detect for chronic,
but subtle insults? It occurs to me that there may be a ribs model
of altered microglial colonization of the fetal brain; it seems
clear that proliferation and differentiation of microglia can
clearly be changed by powerful inputs, but the
chemical messengers that impact that change are closely related (or
the same) as the measurement points in the maternal CRP study.
Could a slow cooking of slightly higher but not acutely
increased maternal inflammation be participating in the
genesis of autism (in some children) through altering the migration
and proliferation of microglia into the neonatal brain? Could
the same chemical messengers of inflammation be subtly
priming the microglia to respond with increased vigor to
insults later in life? Has our replacement of infection with
inflammation included an unanticipated effect that alters the
developmental pathway of the very cells that help shape our
children’s brains? I don’t think we are (quite) clever enough to
answer these types of questions yet, but we are at least starting
to generate the right kind of data to inform us on how to get
started. I don’t know what we will find, but the initial data
doesn’t look very good. In the meantime, I am recommending
you go get some ribs and let them cook all day long. –
–
pD
A Sense Of Relief After (Some Of) Your Phantoms Are Observed By Others, A Distillation of Humbling Complex Early Life Neuroimmune Literature: “Microglia in the developing brain: a potential target with lifetime effects”, and The Need For Dispassionate Analysis
Posted June 15, 2012
on:Hello friends –
I have a confession to make. The fact that a lot of very smart people have ignored or flat out laughed at my arguments bothers me sometimes. I have applied non-trivial, not to be rebated time and effort to put forth what I considered to be logical views, scientifically defendable and important ideas; and yet people I knew were otherwise rational, and in some cases, very intelligent, just hadn’t seemed to get what I was saying. Often this was within the context of a discussion argument of vaccination, but my larger concern, that of a non-imaginary, non-trivial increase in children with autism in the past decades, also usually falls on deaf ears. If “environmental changes” incorporate the chemical milieu of our mother’s wombs, the microbial world our infants are born into, or the ocean of synthetic chemicals we all swim through every day, we have no rational conclusion but that our environment has changed a lot in the past few decades. Considered within the context of the reality based model where the events of early life can be disproportionally amplified through the lifetime of an organism, clinging to the idea that there has been a stable incidence of autism seems dangerously naïve, at most charitable.
And yet, for the most part, many or most of the people who are alarmed are crackpots. There were times I questioned myself. Am I missing something? Am I chasing phantoms? Why aren’t any of these other smart people as worried as I am?
A while ago I got a copy of Microglia in the developing brain: A potential target with lifetime effects (Harry et all), a paper that tells me that if nothing else, I have some good company in pondering the potential for disturbances in early life to uniquely affect developmental outcome, in this instance through alterations to the neuroimmune system. If I am incorrect about the validity of a developmental programming model with lifetime effects, lots of prolific researchers are wrong about the same thing in the same way. Harry is a very thorough (and terrifying) review of the relevant literature. Here is the abstract:
Microglia are a heterogenous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related.
Hell yeah!
The body of Microglia in the developing brain: A potential target with lifetime effects has tons of great stuff. From the Introduction
The evidence of microglia activation in the developing brain of patients with neurodevelopmental disorders(e.g., autism) and linkage to human disease processes that have a developmental basis (schizophrenia) have raised questions as to whether developmental neuroinflammation actively contributes to the disease process. While much of the available data represent associative rather than causative factors, it raises interesting questions regarding the role of these ‘‘immune-type’’ cells during normal brain development and changes that may occur with developmental disorders. Within the area of developmental neurotoxicology, the potential for environmental factors or pharmacological agents to directly alter microglia function presents a new set of questions regarding the impact on brain development.
There is a short section on what is known about the colonization of the brain by microglia, it is a busy, busy environment, and while we are just scratching the surface, microglia seem to be involved in scads of uber-critical operations, many of which pop up in the autism literature. It is just being confirmed that microglia constitute a distinct developmental path that diverges as an embryo, two papers from 2007 and 2010 are referenced as reasons we now believe microglia are a population of cells that migrate into the CNS before birth and are not replaced from the periphery in adulthood. From there, the beautiful complexity is in full effect; as the microglia develop and populate the brain there are specific spatial and morphological conditions, microglia are first evident at thirteen weeks after conception, and do not reach a stable pattern until after birth. In fact, it appears that microglia aren’t done finishing their distribution in the CNS until the postnatal period, “With birth, and during the first few postpartum weeks, microglia disseminate throughout all parts of the brain, occupying defined spatial territories without significant overlap (Rezaie and Male, 2003) suggesting a defined area of surveillance for each cell.”
It occurred to me to wonder if there are differences in microglia settlement patterns in males and females in human infants, as has been observed in other models? Could a spatially or temporally different number of micoglia, or different developmental profiles of microglia based on sex be a participant in the most consistent finding in the autism world, a rigid 4:1 male/female ratio?
Speaking towards the extremely low replacement rates for microglia in adulthood, the authors wonder aloud on the possible effects of perturbations of the process of microglial colonization.
The slow turn-over rate for mature microglia raises an issue related to changes that may occur in this critical neural cell population. While this has not been a primary issue of investigation there is limited data suggesting that microglia maintain a history of previous events. Thus, if this history alters the appropriate functioning of microglia then the effects could be long lasting. Additionally, a simple change in the number of microglia colonizing the brain during development, either too many or too few, could have a significant impact not on only the establishment of the nervous system network but also on critical cell specific processes later in life.
(Emphasis mine)
Perhaps coincidentally (*cough*), we have abundant evidence of an altered microglial state and population in the autism population; while we do not know that these findings are the result of a disturbance during development, it is an increasingly biologically plausible mechanism, and thus far, I’ve yet to see other mechanisms given much thought, excepting the chance of an ongoing, undetected infection.
There is a brief section concerning the changes found in adult microglial populations in terms of density, form, and gene expression in different areas of the brain, “With further investigation into the heterogeneity of microglia one would assume that a significant number of factors, both cell membrane and secreted, will be found to be differentially expressed across the various subpopulations.” Nice.
There is a section of the paper on microglial phenotypes, there are a lot of unknowns and the transformation microglia undergo between functional states is even more nebulously understood during brain development. “It is now becoming evident that in the developing brain, many of the standards for microglia morphology/activation may require readdressing.” We haven’t even figured out what they’re doing in the adult brain!
There is a really cool reference for a study that shows altered microglial function dependent on the age of the organism.
In the adult rodent, ischemia can induce microglia to display either a more ramified and bushy appearance or an amoeboid morphology depending on the level of damage and distance from the infarct site(s). In the immature rodent, ischemia-induced changes in capillary flow or, presumably, altered CNS vascularization can retain the microglia in an amoeboid phenotype for longer and delay the normal ramification process (Masuda et al., 2011).
One way of looking at this would be to say that we should exercise extreme caution in trying to translate our nascent understanding of how mature microglia react when speculating on how immature microglia will act. To follow up on just how little we know, there is a long discussion about the shortcomings of a the term ‘activated’ microglia with some details on chemical profiles of broadly generalized ‘classically inflammatory, ‘alternatively activated’, ‘anti-inflammatory’, and ‘tissue repair’ phenotypes.
Next up is a dizzyingly list of brain development functions that microglia are known, or suspected to participate in. Without getting too deep in the weeds, of particular interest to the autism realm, that list includes neurogenesis and differentiation in the cortex [related: Courchesne, me], cell maturation via cytokine generation, axon survival and proliferation [related: Wolff, me], programmed cell death of Purkinje cells, clearance of ‘early postnatal hippocampul neurons’, and the ‘significant contribution to synaptic stripping or remodeling events’, i.e., pruning (Paolicelli / fractaltine), and even experience dependent microglia / neuron interactions. Taking all of this (and more) into consideration, the authors conclude “Thus, one can propose that alterations in microglia functioning during synapse formation and maturation of the brain can have significant long-term effects on the final established neural circuitry. “ Ouch.
Next up is a summary of many of the animal studies on microglial participation in brain formation, there is a lot there. Interestingly (and particularly inconvenient) is the finding that a lot of the functional actions of microglia during development appear to operate after birth. “Overall, the data suggest that microglial actions may be most critical during postnatal brain maturation rather than during embryonic stages of development.” Doh!
Early life STRESS gets some attention, and for once there is some good news if you look at it the right way. There is something about a very cool study from Schwarz (et all / Staci Bilbo!) involving drug challenge that peered deep into the underlying mechanisms of an environmental enrichment model; animals given a preferential handling treatment were found by two metrics to have differential microglia response in adulthood with (biologically plausible) observations, increased mRNA levels for IL-10 production, and decreased DNA methylation; i.e., less restriction on the gene that produces IL-10, and more messenger RNA around to pass off the production orders [totally beautiful!]. There is more including thyroid disruption (though in a way that I found surprising), and the observations of time dependent effects on immue disturbances. (super inconvenient)
There is so much data that keeps piling on that the authors end up with “Overall, the existing data suggest a critical regulatory role for microglia in brain development that is much expanded from initial considerations of microglia in the context of their standard, immune mediated responses.”
A terrifying concept that I haven’t found time to dedicate a post towards is microglia priming, which gets some attention in Harry.
There is a significant amount of evidence regarding what is often termed ‘‘priming’’ and ‘‘preconditioning’’ events that serve to either exacerbate or provide neuroprotection from a secondary insult, respectively. In these states, the constitutive level of proinflammatory mediators would not be altered; however, upon subsequent challenge, an exaggerated response would be induced. The phenomena of priming represent a phenotypic shift of the cells toward a more sensitized state. . . Exactly how long this primed state will last has not been determined; however, data from microglia suggest that it can extend over an expanded period of time. Preconditioning can also represent changes that would occur not only over the short term but may be long lasting.”
I happen to think that microglia priming is going to be a very important cog in the machinery for this journey when all is said and done; the evidence to support a preconditioning system is strong, and in parallel, the things we see different in autism (and elsewhere) is consistent with a different set of operations of microglia, AND we also have evidence the disturbances that would invoke microglial change are subtle but real risk factors for autism.
What comes next is a type of greatest hits mashup of very cool papers on developmental programming in the CNS.
Galic et al.(2008) examined age related vulnerabilities to LPS in rats to determine critical age periods. Postnatal injection of LPS did not induce permanent changes in microglia or hippocampal levels of IL-1b or TNFa; however, when LPS was given during the critical postnatal periods, PND 7 and 14, an increased sensitivity to drug induced seizures was observed in 8-week-old rats. This was accompanied by elevated cytokine release and enhanced neuronal degeneration within the hippocampus after limbic seizures. This persistent increase in seizure susceptibility occurred only with LPS injection at postnatal day 7 or 14 and not with injections during the first day of life or at PND 20. Similar long-lasting effects were observed for pentylenetetrazol-induced seizures when PND 11 or 16 rat pups were subjected to LPS and hyperthermic seizures (Auvin et al., 2009). These results again highlight this early postnatal period as a ‘‘critical window’’ of development vulnerable to long-lasting modification of microglia function by specific stimuli. Work by Bilbo and co-workers demonstrated LPS-induced deficits in fear conditioning and a water maze task following infection of PND 4 rats with Escherichia coli. In the young adult, an injection of LPS induced an exaggerated IL-1b response and memory deficits in rats neonatally exposed to infection (Bilbo et al., 2005). Consistent with the earlier work by Galic et al. (2008), an age dependency for vulnerability was detected with E. coli-induced infection at PND 30 not showing an increased sensitivity to LPS in later life (Bilbo et al., 2006).
In particular, Galic 2008, or Postnatal Inflammation Increases Seizure Susceptibility in Adult Rats (full paper) was a very formative paper for me; it was elegant in design and showed alarming differences in outcome from a single immune challenge experience, if it occurred during a critical developmental timeframe. If you haven’t read it, you should.
This paper has a nice way of distilling the complexity of the literature in a readable way.
One hypothesis for developmental sensitivity is the heterogeneous roles for inflammatory factors and pro-inflammatory cytokines during development, including their timing-, region and situation-specific neurotrophic properties. Many of the proinflammatory cytokines are lower at birth with a subsequent rapid elevation occurring during the first few weeks of life. In an examination of the developing mouse cortex between PND 5 and 11, mRNA levels for TNFa, IL-1b, and TNFp75 receptor remained relatively constant while a significant increase in mRNA levels of CR3, macrophage-1 antigen (MAC-1), IL-1a, IL-1 receptor 1 (IL- )R1, TNFp55 receptor (TNFp55R), IL-6, and gp130 occurred (Fig. 2). This data suggests that an upregulation of interleukins and cytokine receptors may contribute to enhanced cytokine signaling during normal cortical development.
One hypothesis put forward using a model reliant on postnatal exposure to LPS suggests that these types of exposure may ‘‘reprogram’’ neuroimmune responses such that adult stress results in hyperactivation of the hypothalamic pituitary adrenal (HPA) axis (Mouihate et al., 2010) and corticosterone changes (Bilbo and Schwarz, 2009).While limited, the available data suggest that events occurring during development, especially postnatal development, have the potential to cause long term alterations in the phenotype of microglia and that this can be done in a region specific manner.
[extremely inconvenient]
In what could, conceivably, be a coincidence, our available information on the autism brain also shows region specific changes in microglia populations, microglial activation profiles, and oxidative stress. I do not believe the findings reviewed in Microglia in the developing brain: A potential target with lifetime effects will be meaningless artifacts; the likelihood that our observations of an altered neuroimmune state in autism are not, at least, participatory has become vanishingly small.
Can these findings inform us on the incidence question? I was lurking on a thread on Respectful Insolence a while ago, and someone gave what I thought was a very succinct way of thinking about the changes that our species has encountered the past few decades; it went something like “we have replaced infection with inflammation”. That’s a pretty neat way of looking at how things have gotten different for humanity, at least lots of us, and especially those of us in the first world. We used to get sick and die early; now we live longer, but oftentimes alongside chronic disorders that share a common underlying biological tether point, inflammation.
Any dispassionate analysis of the available data can tell us that we have, indeed, replaced infection with inflammation; we suffer from less death and misery from infection, but more metabolic disorder, more diabetes, more hypertension, more asthma and autoimmune conditions than previous generations. We have largely replaced good fatty acids with poor ones in our diet. All of these conditions are characterized by altered immune biomarkers, including an increase in proinflammatory cytokines. Those are the facts that no one can deny; we have replaced infection with inflammation.
But when we look to the findings of Microglia in the developing brain: A potential target with lifetime effects, it becomes clear that our newfound knowledge of microglial function and crosstalk with the immune system raises some very troubling possibilities.
Lately it has been quite in vogue among a lot of the online posting about autism to at least mention environmental factors which could participate in developmental trajectory leading to autism; that’s a big step, an important and long overdue acknowledgement. If you pay close attention, you will notice that 99% of these admissions are handcuffed to the word “prenatal”. This is likely an attempt to deflect precise questions about the robustness of our evaluation of the vaccine schedule, but the big question, the incidence question, still hinges on fulcrum of the genetic versus environmental ratio ; that is a problem for the purveyors of the fairytale because the prenatal environment of our fetuses, the chemical milieu of their development, is qualitatively different compared to generations past. That chemical soup is their environment; and that environment has unquestionably changed in the past decades as we have replaced infection with inflammation.
Our previous analysis tells us that invoking inflammation outside the brain modifies microglial function inside the wall of the blood brain barrier; good or bad, no honest evaluation of the literature can argue against a lack of effect. What happens outside the brain affects what happens inside the brain. If, however, microglia are active participants in brain formation, as a swath of recent research indicates, can this fact give us insight into the incidence question?
Is a state of increased inflammation the pathway between maternal asthma, depression, stress, and obesity being associated with increased risk of autistic offspring? Have we replaced infection with inflammation plus?
What could be more lethal to the fairytale of a static tale of autism than a positive relationship between a lifestyle characterized by increased inflammation and the chances of having a baby with autism?
Are we totally fucked?
We cannot know the answers unless we have the courage to ask the difficult questions with methods powerful enough to provide good data, and it won’t be easy. The static rate of autism fairytale is a comforting notion; it expunges responsibility for the coronal mass ejection sized change to our fetuses developing environment, and while hiding behind the utterly frail findings of social soft scientists, we can happily place tin foil hats and accusations of scientific illiteracy on anyone who might be worried that our abilities have outstripped our wisdom. That is a terrible, cowardly way to approach the incidence question, what we should be doing is exactly the opposite, ridiculing the epidemic sized error bars in prevalence studies and demanding more answers from the hard scientists. Eventually we will get there and it will be a critical mass of information from studies like Harry that will propel decision makers to abandon the fairytale for a course regulated by dispassionate analysis.
– pD
Additional Findings of an Altered NeuroImmune Environment In Autism with Intriguing Questions Raised – Microglia in the Cerebral Cortex in Autism
Posted April 17, 2012
on:Hello friends –
A study with a beautifully terse title, Microglia in the Cerebral Cortex in Autism landed in my inbox the other day. It adds to the growing literature showing perturbations in neuroimmune system in the autism population, this time by measuring the number of microglia in different parts of the brain. Here is the abstract:
We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had significantly more microglia compared to controls (p = 0.02). One such subject had a microglial density in FI within the control range and was also an outlier behaviorally with respect to other subjects with autism. In VC, microglial densities were also significantly greater in individuals with autism versus controls (p = 0.0002). Since we observed increased densities of microglia in two functionally and anatomically disparate cortical areas, we suggest that these immune cells are probably denser throughout cerebral cortex in brains of people with autism.
[Note: You don’t see p-values of .0002 too often!] This paper is at a high level largely similar to another recent paper, Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism (discussed on this blog, here). The authors were clever here, they intentionally used two very anatomically different, and spatially separated parts of the brain to evaluate for microglia population differences, a sort of bonus slice to learn more about the population of microglia in the brain.
The specific measurement technique in use, staining for specific antibodies, does not give us information regarding the activated/non activated state of the microglia, a determination which must be made with evaluations of morphology, though several other studies have measured this directly, and many more provide indirect evidence of a chronic state of activation of microglia. Not only did the author s report an increase in population density in the autism group, the number of microglia was also positively correlated between sites; i.e., a patient with more microglia in the visual cortex was also more likely to have more microglia in the fronto-insular.
These findings demonstrate that, at the time of death, there were significantly higher microglial densities in the subjects with autism compared to the control subjects, and that this change in microglial density is widespread throughout the cerebral cortex in autism. The microglial densities in FI and VC in the same subject were significantly correlated (both measures were available in 10 controls and 8 autistic subjects for a total of 18 subjects) with Pearson’s r2 = 0.4285, p = 0.0024 (Fig. 6). This indicates that the elevation in density is consistent between these areas, and probably throughout the cortex, in both subjects with autism and controls.
Also of interest, in the control group microglia densities tended to decrease with age, but this change was not seen in the autism population.
There is some discussion about a big problem in the autism research world, a very real and meaningful dearth of available tissue samples, this study shared five patients with Morgan, and one from Vargas. [Note: Sign up to help. Morbid but necessary.]
The authors went on to ask the exact same question I had, “How and when does the increased density of autistic microglial arrays arise, and how is it maintained?” Unfortunately, while there aren’t any good answers, I was still a little disappointed with the analysis. There is a quick rundown of a variety of neuroimmune and peripheral immune findings in autism, and some thoughts on ‘sickness behavior’ with the implicit interconnectedness of the immune state and behaviors, and some discussion on some of the many animal models of maternal immune activation in autism.
In an stroke of amazing serendipity, the authors wonder aloud towards the possibility of a type of distracted worker effect of microglia on neural networks, sort of a bank shot on the autism paradox I struggled with in my previous post when I said,
Are increased neuron number and altered white matter tracts the result of microglia not performing the expected maintenance of the brain? Are the findings from Courchesne and Wolff the opportunity costs of having a microglia activated during decisive developmental timeframes?
The authors of Microglia in the Cerebral Cortex in Autism state
In contrast, microglia can also phagocytize synapses and whole neurons, thus disrupting neural circuits. For example,when the axons of motor neurons are cut, the microglia strip them of their synapses (Blinzinger and Kreutzberg 1968; Cullheim and Thams 2007; Graeber et al. 1993). Another example of the disruption of circuitry arises from the direct phagocytosis of neurons. Neurons communicate with microglia by emitting fractalkine*, which appears to inhibit their phagocytosis by microglia. Deleting the gene for the microglial fractalkine receptor (Cx3cr1) in a mouse model of Alzheimer’s disease has the effect of preventing the microglial destruction and phagocytosis of layer 3 neurons that was observed in these mice in vivo with 2-photon microscopy (Furhmann* et al. 2010). In particular, Cx3cr1 knockout mice have greater numbers of dendritic spines in CA1 neurons, have decreased frequency sEPSCs and had seizure patterns which indicate that deficient fractalkine signaling* reduces microglia-mediated synaptic pruning, leading to abnormal brain development, immature connectivity, and a delay in brain circuitry in the hippocampus (Paolicelli* et al. 2011). In summary, the increased density of microglia in people with autism could be protective against other aspects of this condition, and that a possible side-effect of this protective response might involve alterations in neuronal circuitry.
Oh hell yeah. (* concepts and papers discussed on this blog, here)
Going back to the big dollar question, How and when does the increased density of autistic microglial arrays arise, and how is it maintained?”, the possibility of an ongoing infection was raised as a one option, “The increase of microglial densities in individuals with autism could be a function of neuroprotection in response to harmful microorganisms.” Vargas had a dedicated section towards a failure to find agents of the peripheral immune system that are consistent with infiltration from the peripheral immune system commonly observed during acute infection, I do not think other papers have looked for that per se, but will cede to someone with better data. (?) There was a very weird paper from Italy that pointed to a possible polyomavirus transmission from the father in the autism group, though this study was not referenced in Microglia in the Cerebral Cortex in Autism. [Note: I showed my wife this paper, and she told me, “Good job with the autism gametes.” Nice.] Could a virus cause autism, is a nice discussion on this that includes blog and personal favorites, Fatemi, Patterson, and Persico discussing the possibilities and limitations of the study. Great stuff!
While I must admit the possibility that the chronically activated microglia in autism are working on purpose, the irony gods mandate that I wonder aloud if certain segments of the autism Some-Jerk-On-The-Internet population will cling to the possibility that autism is caused by a disease in order to disavow a causative role for neuroinflammation? Those are some tough choices.
There is a discussion on the myriad of ways that microglia could directly participate in autism pathogenesis, starting the discussion off right to the point, “By contrast, there are diseases that arise from intrinsic defects in the microglia themselves which can cause stereotypic behavioral dysfunctions.” There is a short discussion of Nasu-Hakola disease, something I’d never heard of, which has evidence of an increase in cytokines as a result of genetically driven microglial deficiencies, and shows striking behavioral manifestations.
The possibility of some areas of the brain being more susceptible to alterations than others is there too, “Thus, while changes in microglial density appear to be widespread in brains of autistic individuals, some areas may be more vulnerable than others to its effects.” Considering this idea alongside the extremely heterogeneous set of symptoms assigned to autism, a curious question to ponder becomes; if neuroinflammation is a participatory process in the behavioral manifestation of autism, could some of the variability in autistic behaviors be explained by spatially specific gradients of microglial activity? Going further, considering the still largely mysterious migration of microglia into the brain during development, could the temporal origin of microglial activation in autism be a determinant in the eventual behavioral manifestations? These are tricky questions, and I don’t think that our current methodological capacities are sufficient to start thinking about forming a model for analysis.
One concept I was surprised to not receive attention was a developmental programming model, where animal studies tell us that if something happens during critical developmental timeframes, the effect can propagate into adulthood. In fact, one study, Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain (Bland et all) exposed four day old animals to e-coli, which found, among other things, “significantly more microglia in the adult DG of early-infected rats”, something seemingly of considerable salience to the current findings, especially considering the known risk factors of early infections as autism risk factors. In Bland, no external agent other than an infection during early life was necessary; this is the essence of the developmental programming model, even after the infection was long since cleared, patterns of physiology were imprinted, the animals recovered from e-coli but were changed from the experience. This my biggest issue with the possibility of an as of yet undefined, and continued evidence free pathogen or process that is causing the immune abnormalities we see in autism, it mandates we ignore existing biologically plausible models that fit well within known risk factors for autism. Why?
Another area this paper was curiously silent on is the data regarding differences in males and females in the timeframes of microglial migration into the brain, something I’d like to learn much more about soon. As an example, Sex differences in microglial colonization of the developing rat brain [yet another by blog favorite, Staci Bilbo] reported “the number and morphology of microglia throughout development is dependent upon the sex and age of the individual, as well as the brain region of interest” among other findings broadly consistent with a beautiful complexity. This is interesting fodder for a discussion concerning possibly the most persistent finding in autism, a very high male to female ratio that has a series of possible explanations [somewhat discussed on this blog, here].
So we know more, but still have only increased our knowledge incrementally. It is increasingly likely that an increased number of microglia in many areas of the brain is characteristic of autism, but the whys, hows, whens, wheres, and whoms still hold many mysteries. The more things change, the more they stay the same.
– pD
The Increasingly Multifaceted Resume Of Microglia, Speculations On What It Might Mean For An Autism Paradox and The Swan Song Of Another Autism Canard
Posted March 26, 2012
on:Hello friends –
I’ve had a couple of interesting papers land in my pubmed feed the past few weeks that seem to be tangentially touching on something that has been at the back of my mind for a long time; namely, the repeated findings of a state of an ongoing immune response in the CNS of the autism population, coupled with a behavioral state that is either static, or in many cases, showing gradual improvement over time. [Discussions of ongoing immune response in the brain in autism, here, here, or here]. This is exactly the opposite of what I expected. Most of the conditions I had generally associated with a state of neuroinflammation, i.e., Alzheimer’s or Parkinson’s show a behavioral profile opposite to autism over time, i.e., a deterioration of skills and cognitive abilities. The diagnosis for these conditions is never a straight line or a gradual curve upwards, but a dispassionately reliable trajectory of a downward spiral.
This is something that has been really bugging me a lot as a riddle, I’ve mentioned it here in comments, and other places on the Internet. While outright signs of neuroinflammation are clearly associated with conditions you would rather not have, as opposed to have, we must admit that the available evidence tells us that we cannot just wave our hands, say ‘neuroinflammation!’, and know much more than the broad strokes. [Note: In my early days of my AutismNet life, my view was somewhat less nuanced.] I think that part of what was bothering me is the result of an oversimplified model in my mind’s eye, but I’d formed that model on top of a set of measurements that had empirical precision but underpowered understandings, alongside a more fundamental lack of knowledge.
We know a little more now.
The first paper that really got me thinking along these lines was Synaptic pruning by microglia is necessary for normal brain development, (discussed on this blog, here), which provided evidence of microglial involvement in the ‘pruning’ of synapses, an important step in brain development thought to streamline neural communication by optimizing neuron structure. This was the first paper I’d read that hinted at microglia participation in ‘normal’ brain function; it was only very recently that microglia were considered to have any role in non pathological states. Another paper, Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease, also implicated microglia in synaptic pruning.
Then I got myself a copy of The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. It is a review of several recent studies on the non-excited life of microglia.
In the healthy brain, quiescent microglia continuously remodel their shape by extending and retracting highly motile processes. Despite a seemingly random sampling of their environment, microglial processes specifically interact with subsets of synaptic structures, as shown by recent imaging studies leading to proposed reciprocal interactions between microglia and synapses under non-pathological conditions. These studies revealed that various modalities of microglial dynamic behavior including their interactions with synaptic elements are regulated by manipulations of neurotransmission, neuronal activity and sensory experience. Conversely, these observations implied an unexpected role for quiescent microglia in the elimination of synaptic structures by specialized mechanisms that include the phagocytosis of axon terminals and dendritic spines. In light of these recent discoveries, microglia are now emerging as important effectors of neuronal circuit reorganization.
This review by Tremblay was published in 2012, evidence of the nascent nature of our available data on microglial involvement in the normal brain environment; Tremblay states that part of the reason this type of finding is so recent is the relative difficulty of measuring microglia in non excited states. They were the electrons of brain measurements; our previous attempts to measure them were capable of causing them to change morphology.
The roles of ‘resting’ or immunologically quiescent microglia have remained relatively unknown (also see Tremblay et al., 2011). This is largely due to the difficulties of studying microglia in their non-activated state. Microglia respond promptly to any changes occurring in their environment, and therefore experimental ex vivo and in vitro preparations inevitably result in transformation of their normally prevailing behavior.
Nice.
Anyway, some new whizbang technologies (i.e., in vivo two-photon laser scanning microscopy)[?] are allowing researchers to peer into the ho-hum everyday activities of ‘non activated’ microglia, and what they are finding is that the term ‘activated microglia’ might be a bit of a misnomer, microglia have been participating in brain function all along, it is just that our filters were insignificantly powered to detect some of their actions until very recently. Several studies have shown that so called ‘resting’ microglia are constantly evaluating their environment with protusions that seemed to operate rather quickly in relationship to other types of neurons.
This unexpected behavior suggested that resting or surveillant microglia may continuously survey the brain parenchyma as part of their immune function, which would justify the substantial expenditure of energy required to continuously maintain microglial dynamics in the normal brain, without excluding the possibility of an additional, distinct contribution to normal brain physiology
Several papers are reviewed that utilized a couple of highly technical methods, including double roll your own transgenic mouse models to visualize the interactions of microglia in a non excited state and synapses. Specific areas of the brain were measured in different studies, microglia were observed transiently engaging with neurons and seemed to target some dendrites for removal. The authors speculate that this could be a mechanism by which neuronal network maintenance, plasticity, could be affected.
In the mature healthy CNS, neuronal networks are continuously remodeled through the formation, modification and elimination of synaptic structures (see Fortin et al. (2011) for molecular mechanisms of structural plasticity) in relation with behavioral and sensory experience.
And
To determine a possible role of surveillant microglia in the structural remodeling of synaptic structures under normal physiological conditions, Tremblay et al. (2010b) also examined the size changes of spines and terminals before, during and after microglial contacts. Spines contacted by microglial processes during imaging (30–120 min sessions) were found to be smaller initially than those which remained non-contacted. Spines, but not terminals, also underwent transient increases in size during microglial contact, with smaller spines showing the most pronounced changes. Surprisingly, chronic imaging over 2 days further revealed a statistically significant difference in the elimination rate of microglia-contacted spines: spines contacted by microglia were more frequently eliminated than non-contacted spines (24 versus 7%; P 0.05), and in all cases, only the small spines were seen to disappear. These observations suggest that despite an apparently random sampling of the parenchyma, microglial processes specifically target a subset of small, structurally dynamic and transient dendritic spines.
There is also some description of studies that seemed to indicate that the microglial/synapse interactions could be modified through environmental stimulus, two experiments were described involving sensory deprivation and consequent changes in microglia activity. Other experiments described changes in microglial surveillance as a result of induced changes in neuronal excitability by chemical agonists or antagonists of glutamate receptors. [Perhaps this is the basis of the curious findings in Neuroprotective function for ramified microglia in hippocampal excitotoxicity?]
In their concluding statements, Tremblay provides a good description of just how little we know, and in a style that I love, poses open questions for the newer rounds of literature to address.
Since the recent studies have barely scratched the surface (of the brain in this case), the modalities of microglial interactions with excitatory and inhibitory synapses throughout the CNS, much as their functional significance and particular cellular and molecular mechanisms still remain undetermined. For example, in which contexts do quiescent microglia directly phagocytose axon terminals and dendritic spines, use other mechanisms such as proteolytic remodeling of the extracellular space, or refrain from intervening? How do surveillant microglia recognize and respond to the various molecular signals in their environment, including dynamic changes in neurotransmission and neuronal activity at individual synapses? How do these immune cells cooperate with other glial cells, as well as peripheral myeloid cells, in maintaining or shaping neuronal architecture and activity? And, as in the case of microglial memory of past immune challenges (see Bilbo et al., 2012), do surveillant microglia somehow remember their previous behavioral states, the flux of information processing in the brain, or the structural changes of synaptic elements in recent and not so recent windows of intervention?
The last sentence there, I think, is especially salient considered within a context of developmental programming.
So what we’ve learned is that decades after the discovery of microglia cells as the immune regulators in the CNS, they appear to also be participating in more fundamental maintenance of the neural structure of our brains; there is increasing evidence of direct relationships in synaptic and axonal removal as well as roles in neurotransmission and the regulation of excitability. Is more on the horizon?
But what about autism and our apparent autism paradox of a static or improving behavioral state alongside conditions of immune activation within the CNS?
Well, I have also been thinking about two brain scanning studies that have come out not too long ago, Neuron Number in Children With Autism (Courchesne et all) , which found increased numbers of neurons in the autism cohort, and Differences in White Matter Fiber Tract Development Present From 6 to 24 Months in Infants With Autism (Wolff et all) which found that the autism group showed denser bundled of white matter, so called wiring, between different parts of the brain. In both of these studies mention is made of the fact that it was possible that their findings, increased cell numbers could be the result of inappropriate removal of excess neurons during development.
Apoptotic mechanisms during the third trimester and early postnatal life normally remove subplate neurons, which comprise about half the neurons produced in the second trimester. A failure of that key early developmental process could also create a pathological excess of cortical neurons.
and
For example, differences in structural organization prior to a period of experience-dependent development related to social cognition (52–54) may decrease neural plasticity through limitations on environmental input, preventing typical neural specialization (52). These alterations could have a ripple effect through decreasing environmental responsiveness and escalating invariance*, thus canalizing a specific neural trajectory that results in the behavioral phenotype that defines ASDs. In typical development, the selective refinement of neural connections through axonal pruning (55) along with constructive processes such as myelination (56) combine to yield efficient signal transmission among brain regions. One or both of these mechanisms may underlie the widespread differences in white matter fiber pathways observed in the current study.
* 😦
So, we have growing evidence of microglial participation of neural maintenance alongside growing evidence of impaired maintenance in the autism cohort.
Can our autism paradox be explained by microglia converging in the center of these related lines of thought? Is the answer to our riddle that the ongoing immune response in the brain is not sufficiently powered, or targeted, to cause increasing loss of abilities, but instead, was enough to keep critical, once in a lifetime chances for brain organization from occurring? Are increased neuron number and altered white matter tracts the result of microglia not performing the expected maintenance of the brain? Are the findings from Courchesne and Wolff the opportunity costs of having a microglia activated during decisive developmental timeframes?
That is a pretty neat idea to consider.
Even without the Courchesne and Wolff, the findings that specifically mention impaired network maintenance as possible culprits, the findings of active participation of ‘non-active’ microglia in brain optimization and normal processes is a very problematic finding for another autism canard, the idea that findings of neuroinflammation may not be pathological. The intellectually honest observer will admit that the crux of this defense lay in vaccine count trial testimony presented by John Hopkin’s researchers after their seminal neuroinflammation paper was published. Unfortunately, the vigor with which this testimony is trotted out online does not match the frequency with which such ideas actually percolate into the literature.
But with the data from Tremblay, Paolicelli, and others, such an idea becomes even more difficult to defend, we must now speculate on a mechanism by which either microglia could be in an excited state and continue to perform streamlining of the neural structure, or insist that it is possible that microglia were not excited during development, and something else happened to interfere with neuron numbers, and then, subsequently the microglia became chronically activated.
This is unlikely, and unlikelier still when we consider that anyone proposing such a model must do so with enough robustness to overcome a biologically plausible pathway supported by a variety of studies. And that is only if there was anything underneath the vapor! Make no mistake, if you ever press someone to actually defend, with literature, the mechanisms by which a state of chronic neuroinflammation might be beneficial in autism, or even the result of something else that also causes autism, no further elucidation of that mechanism is ever forthcoming. There isn’t anything there.
At some point, it becomes incumbent of people wishing to make an argument that they propose a biologically plausible mechanism if they wish to continue to be taken seriously. If they cannot, if the literature cannot be probed to make such a case with more empirical support than it might be, the notion so add odds with available evidence should be summarily discarded, unless and until a transcendent set of findings is presented. There should always be room for more findings in our worldview, but precious limited space for faith in the face of contradictory findings.
– pD